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Abstract

For each n ≥ 1, let {Xin, i > 1} be independent copies of a nonnegative
continuous stochastic process Xn = (Xn(t))t∈T indexed by a compact metric space
T . We are interested in the process of partial maxima

M̃n(u, t) = max{Xin(t), 1 6 i 6 [nu]}, u ≥ 0, t ∈ T.

where the brackets [ · ] denote the integer part. Under a regular variation condition
on the sequence of processes Xn, we prove that the partial maxima process M̃n

weakly converges to a superextremal process M̃ as n→∞. We use a point process
approach based on the convergence of empirical measures. Properties of the limit
process are investigated: we characterize its finite-dimensional distributions, prove
that it satisfies an homogeneous Markov property, and show in some cases that it is
max-stable and self-similar. Convergence of further order statistics is also considered.
We illustrate our results on the class of log-normal processes in connection with some
recent results on the extremes of Gaussian processes established by Kabluchko.
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1 Introduction

A classical problem in extreme value theory (EVT) is to determine the asymptotic behav-
ior of the maximum of independent and identically distributed (i.i.d.) random variables
(Zi)i≥1. What are the assumptions that ensure the weak convergence of the rescaled
maximum

max
1≤i≤n

Zi − bn
an

, an > 0, bn ∈ R,

and what are the possible limit distributions ? These questions were at the basis of
the development of EVT and found its answer in the Theorem by Fisher and Tippett
[9] characterizing all the max-stable distributions and in the description of their domain
of attraction by Gnedenko [10] and de Haan [6]. Another stimulating point of view
developped by Lamperti [16] is to introduce a time variable and consider the asymptotic
behavior of the partial maxima

max
1≤i≤[nu]

Zi − bn
an

, u ≥ 0.

The corresponding limit process is known as an extremal process: it is a pure jump Markov
process wich is also max-stable, see Resnick [18].

Since then, EVT has known many developments. Among several other directions, the
extension of the theory to multivariate and spatial settings is particularly important, as
well as the statistical issues raised by the applications on real data sets. For excellent
reviews of such developments, the reader is invited to refer to the monographies by Resnick
[19], de Haan and Fereira [7] or Beirlant et al [1] and the references therein.

Our purpose here is to focus on the functional framework and investigate the asymp-
totic behavior of the partial maxima processes based on a doubly infinite array of inde-
pendent random processes. Let T be a compact metric space and, for each n ≥ 1, let
{Xin, i > 1} be independent copies of a sample continuous stochastic process (Xn(t))t∈T .
Without loss of generality, we will always suppose that Xn is non-negative (otherwise con-
sider X ′n(t) = eXn(t)) and we denote by C+ = C+(T ) be the set of non-negative continuous
functions on T . We are mainly interested in the process of pointwise maxima

Mn(t) = max{Xin(t), 1 6 i 6 n}, t ∈ T, (1)

and the process of partial maxima

M̃n(u, t) = max{Xin(t), 1 6 i 6 [nu]}, u ≥ 0, t ∈ T. (2)

We use the convention that the maximum over an empty set is equal to 0, so M̃n(0, t) ≡ 0.
Clearly, we also have M̃n(1, t) = Mn(t). In this framework, the parameter t ∈ T is thought
as a space parameter and u ∈ [0,+∞) as a time variable.
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Our approach relies on the convergence of the following empirical measures

βn =
n∑
i=1

δXin and β̃n =
∑
i≥1

δ(Xin,i/n) (3)

on C+ and C+×[0,+∞) respectively. The maxima processesMn and M̃n can be written as
functionals of the empirical measure βn and β̃n respectively. We will prove the continuity
of the underlying functionals and then use the continuous mapping Theorem to deduce
convergence of the maxima processes from convergence of empirical measures.

Connections between EVT and point processes are well known. In the case when the
underlying state space is locally compact, the following result holds (see Proposition 3.21
in[19]): if nP[Xn ∈ · ] vaguely converges to some measure µ, the empirical measures βn
and β̃n converge to Poisson random measures with intensity µ and µ ⊗ ` respectively, `
being the Lebesgue measure on [0,+∞). However, in our framework the state space C+

is not locally compact and we need a suitable generalization of the above result. To this
aim, we follow the approach by Davis and Mikosch [4] based on the notion of boundedly
finite measures and ]-weak convergence detailed by Daley and Vere-Jones in [3].

The paper is organized as follows. In section 2, we introduce the technical material
needed on boundedly finite measures, ]-weak convergence and convergence of empirical
measures. Our main result is the convergence of the partial maxima process M̃n which
is stated and proved in section 3. Then, in section 4, we investigate some properties of
the limit process M , known as a superextremal process. A brief extension of our results
to further order statisctics is considered in section 5. The last section is devoted to an
application of our results to the class of log-normal processes, based on a recent work by
Kabluchko [14] on the extremes of Gaussian processes.

2 Preliminaries on boundedly finite measures and point
processes

In this section, we present general results on boundedly finite measures and point processes
that will be useful in the sequel. The reader should refer to Appendix 2.6 in Daley and
Vere-Jones [3] or to section 2 of Davis and Mikosch [4]. This has also closed connections
with the theory of regular variations, see Hult and Lindskog [11, 12].
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2.1 Boundedly finite measures

Let (E, d) be a complete separable metric space and E the Borel σ-algebra of E. We
denote by Mb(E) the set of all finite measures on (E, E). A sequence of finite measures
{µn, n > 1} is said to converge weakly to µ ∈ Mb(E) if and only if

∫
fdµn →

∫
fdµ for

all bounded continuous function f on E. We write µn
w→ µ to denote weak convergence.

It is well known that this notion of convergence is metrized by the Prokhorov metric

p(µ1, µ2) = inf{ε > 0; ∀A ∈ E , µ1(A) 6 µ2(Aε) + ε and µ2(A) 6 µ1(Aε) + ε}

where Aε = {x ∈ E; ∃a ∈ A, d(a, x) < ε} is the ε-neighborhood of A. Endowed with
this metric, Mb(E) is a complete separable metric space.

A measure µ on (E, E) is called boundedly finite if it assigned finite measure to bounded
sets, i.e. µ(B) < ∞ for all bounded B ∈ E . Let M ]

b (E) be the set of all boundedly
finite measures µ on (E, E). A sequence of boundedly finite measures {µn, n > 1} is
said to converge ]-weakly to µ ∈ M ]

b (E) if and only if
∫
fdµn →

∫
fdµ for all bounded

continuous function f on E with bounded support. There exists a metric p] onM ]
b (E) that

is compatible with this notion of ]-weak convergence and that makes M ]
b (E) a complete

and separable metric space. Such a metric can be constructed as follows. Fix an origin
e0 ∈ E and, for r > 0, let B̄r = {x ∈ E; d(x, e0) ≤ r} be the closed ball of center e0 and
radius r. For any µ1, µ2 ∈ M ]

b (E), let µ(r)
1 and µ(r)

2 be the restriction of µ1 and µ2 to B̄r.
Note that µ1 and µ2 are finite measures on B̄r and denote by pr the Prokhorov metric on
Mb(B̄r). Define

p](µ1, µ2) =

∫ ∞
0

e−r
pr(µ

(r)
1 , µ

(r)
2 )

1 + pr(µ
(r)
1 , µ

(r)
2 )

dr.

There are several equivalent characterizations of ]-weak convergence. Let {µn, n > 1}
and µ be boundedly finite measures on E. The following statements are equivalent:

i )
∫
fdµn →

∫
fdµ for all f bounded continuous real valued function on E with

bounded support;

ii ) p](µn, µ)→ 0;

iii ) there exist a sequence rk ↗ +∞ such that, for all k > 1, µ(rk)
n

w→ µ(rk);

iv ) µn(B)→ µ(B) for all bounded B ∈ E such that µ(∂B) = 0.

We write µn
w]→ µ to denote ]-weak convergence.
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A boundedly finite point measure on E is a measure µ of the form

µ =
∑
i∈I

δxi

with {xi, i ∈ I} a finite or countable family of points in E such that any bounded set
B ⊆ E contains at most a finite number of the xi’s. The set of boundedly finite point
measures on E is denoted by M ]

(b,p)(E). It is a closed subset of M ]
b (E) and hence is

complete and separable when endowed with the induced metric.

The following characterization of ]-weak convergence of boundedly finite point mea-
sures will be useful. Let {µn =

∑
i δxni , n > 1} and µ =

∑
i δxi be elements of M ]

(b,p)(E).

Then µn
w]→ µ if and only if there exist some sequence rk ↗ +∞ such that for all k ≥ 1,

there exist N > 0 and m > 0 such that

∀n > N, µ(rk)
n =

m∑
i=1

δxn,ki
and µ(rk) =

m∑
i=1

δxki

for some points {xn,ki , xki ; 1 ≤ i ≤ m, n ≥ N} in B̄rk such that xn,ki → xki .

2.2 Convergence of the empirical measures

Let (Ω,F ,P) be a probability space. A boundedly finite point process on E is a measurable
mapping N : Ω→M ]

(b,p)(E). A typical example of boundedly finite point process on E is
a Poisson point process Πν with intensity ν ∈M ]

b (E). We will also consider the following
empirical point processes βn and β̃n defined by Equation (3), where, for each n ≥ 1,
{Xin, i ≥ 1} are independent copies of an E-valued random variable Xn. The random
variable βn is a finite point process on E, while β̃n is a boundedly finite point process on
Ẽ = E × [0,+∞) endowed with the metric

d̃((x1, u1), (x2, u2)) = d(x1, x2) + |u2 − u1|, x1, x2 ∈ E, u1, u2 ∈ [0,+∞).

The following Proposition will play a key role in the sequel.

Proposition 2.1. The following statements are equivalent, where the limits are taken
as n→∞:

i ) nP[Xn ∈ · ]
w]→ ν;

ii ) βn ⇒ Πν with Πν a Poisson point process on E with intensity µ and ⇒ standing
for weak convergence in M ]

(b,p)(E).
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iii ) β̃n ⇒ Π̃ν with Π̃ν Poisson point process on E × [0,+∞) with intensity µ ⊗ `, `
being the Lebesgue measure on [0,+∞) and ⇒ standing for weak convergence in
M ]

(b,p)(E × [0,+∞)).

The proof of this Proposition follows by an adapation of Proposition 3.21 in Resnick
[19] which states a similar result in the case of a locally compact state space and in terms
of vague convergence. As noticed by Davis and Mikosch [4], the proof remains valid for a
complete separable metric space E if we change vague convergence by ]-weak convergence.
See also Theorem 4.3 in Davydov, Molchanov and Zuyev [5].

In the terminology of Hult and Lindskog [11, 12], the condition i) in Proposition 2.1
means that the sequence Xn is regularly varying. A particularly important case is when
E is endowed with a strucure of cone, i.e. a multiplication by positive scalars. If there
exists a sequence (an)n≥1 of positive reals such that

nP[a−1
n X1 ∈ · ]

w]→ ν

for some nonzero ν ∈M ]
b (E), then the random variable X1 is said to be regularly varying.

Under some technical assumptions on the structure of the convex cone E (e.g. continuity
properties of the multiplication), the limit measure ν is proved to be homogeneous of
order −α < 0, i.e.

ν(λA) = λ−αν(A), λ > 0, A ∈ E .

Furthermore, the sequence an is regularly varying with index 1/α. In this framework, if
{Xi, i ≥ 1} is an i.i.d. sequence of regularly varying random variables and Xin = a−1

n Xi,
then condition i) is equivalent to

nP[a−1
n X1 ∈ · ]

w]→ ν

where the limit measure ν is homogeneous of order −α < 0 and

Mn(u, t) = a−1
n max

1≤i≤[nu]
Xi(t), u ≥ 0, t ∈ T.

3 Extremes of independent stochastic processes

We go back to our original problem where the Xin’s are non negative continuous processes
on T . We endow the set C+ = C+(T ) of non negative continuous functions on T with the
uniform norm ‖x‖ = supt∈T |x(t)|, x ∈ C+. It turns out that, when working with maxima,
the uniform metric is not adaptated, mainly because sets such as {x ∈ C+; ‖x‖ ≥ ε} are

6
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not bounded for this metric. For this reason, we introduce C+

0 = (0,+∞] × SC+ where
SC+ = {x ∈ C+ : ‖x‖∞ = 1} is the unit sphere. We define the metric

d((r1, s1), (r2, s2)) = |1/r1 − 1/r2|+ ‖s1 − s2‖, (r1, s1), (r2, s2) ∈ C+

0 .

The metric space (C+

0 , d) is complete and separable. Define also C+
0 = C+ \ {0} and

consider the “polar decomposition”:

T :

{
C+

0 → (0,∞)× SC+

x 7→ (‖x‖, x/‖x‖) .

The mapping T is an homeomorphism and we identify in the sequel C+
0 and (0,+∞)×SC+ .

In this metric, a subset B of C+
0 is bounded if and only if it is bounded away from zero,

i.e. included in a set of the form {x ∈ C+; ‖x‖ ≥ ε} for some ε > 0.

3.1 Spatial maximum process

For the sake of clarity, we present first our results on the spatial maximum process Mn

defined by Equation (1).

Theorem 3.1. Assume that nP[Xn ∈ · ]
w]→ ν in M ]

b (C
+

0 ) and that ν(C+

0 \ C+
0 ) = 0.

Then, the process Mn weakly converges in C(T ) as n→∞ to the process M defined by

M(t) = sup
i≥1

Yi(t), t ∈ T, (4)

where
∑

i≥1 δYi is a Poisson point process on C+
0 with intensity ν.

The proof of Theorem 3.1 relies on the following Lemma. With a slight abuse of
notation, we define

M ]
(b,p)(C

+
0 ) = {µ ∈M ]

(b,p)(C
+

0 ) : µ(C+

0 \ C+
0 ) = 0}.

Note M ]
(b,p)(C

+
0 ) is an open subset of M ]

(b,p)(C
+

0 ).

Lemme 3.1. The mapping θ : M ]
(b,p)(C

+
0 )→ C+ defined by θ(0) ≡ 0 and

θ
(∑

i∈I

δ(ri,si)

)
=
(
t 7→ sup{risi(t); i ∈ I}

)
is well-defined and continuous.

7
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Proof of Lemma 3.1:

• First, we show that the mapping θ is well defined. This is not obvious since the
pointwise supremum of a countable family of functions is not necessarily finite nor
continuous.
For ε > 0, let µ(ε) be the restriction of µ on the set B̄ε = [ε,∞] × SC. Since B̄ε is
bounded for the metric d, the point measure µ(ε) has only a finite number of atoms
and therefore θ(µ(ε)) is the maximum of a finite number of non negative continuous
functions and is hence a non negative continuous function.

Furthermore, for all t ∈ T , |θ(µ(ε))(t)− θ(µ)(t)| 6 ε. So θ(µ) is the uniform limit as
ε→ 0 of the continuous functions θε(µ), and hence θ(µ) ∈ C+ and satisfies

‖θ(µ(ε))− θ(µ)‖ 6 ε. (5)

• Second, we show that the mapping θ is continuous.
Let {µn =

∑
i∈In δxni , n > 1} be a sequence of measures in M ]

(b,p)(C
+
0 ) converging

to µ =
∑

i∈I δxi . For all ε > 0, there exists ε′ < ε, N > 0 and m > 0 such that

∀n > N, µ(ε′)
n =

m∑
i=1

δxnε′i
and µ(ε′) =

m∑
i=1

δxε′i

with xnε
′

i , xε
′
i ∈ B̄ε′ and xnε

′
i → xε

′
i as n → ∞. Clearly, this implies that θ(µ(ε′)

n )
converges in C+ to θ(µ(ε′)) as n → ∞. Hence there exists an integer n0 such that
‖θ(µ(ε′)

n )− θ(µ(ε′))‖ ≤ ε for all n ≥ n0.
Then, thanks to Equation (5), we obtain for n ≥ n0

‖θ(µn)− θ(µ)‖ ≤ ‖θ(µn)− θ(µ(ε′)
n )‖+ ‖θ(µ(ε′)

n )− θ(µ(ε′))‖+ ‖θ(µ(ε′))− θ(µ))‖ ≤ 3ε.

This proves that θ(µn)→ θ(µ) as n→∞ and that the mapping θ is continuous.

�

Proof of Theorem 3.1:
Under the assumption nP[Xn ∈ · ]

w]→ ν, we know from Proposition 2.1 that the empirical
measure βn defined by Equation (3) weakly converges in M(b,p)(C

+

0 ) to a Poisson point
process Πν with intensity ν. The assumption ν(C+

0 \ C+
0 ) ensures that Πν lies almost

surely in M(b,p)(C+
0 ). Note that Mn = θ(βn), and according to Lemma 3.1, the mapping θ

is continuous. So the continuous mapping Theorem (see e.g. Theorem 5.1 in Billingsley
[2]) entails θ(βn)⇒ θ(Πν) which is equivalent to Mn ⇒M . �
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3.2 Spatio-temporal maximum process

We consider now convergence of the space-time process M̃n defined by Equation (2).

For fixed u ≥ 0, the space process t 7→ M̃n(u, t) is sample continuous and non negative,
i.e. a random elements of C+. Furthermore, the time process u 7→ M̃n(u, ·) can be seen
as a C+-valued càd-làg process on [0,+∞); it is indeed constant on intervals of the form
[k/n, k/n+ 1/n), k ∈ N. Hence, we will consider the process M̃n as a random element of
the Skohorod space D([0,+∞),C+) endowed with the J1-topology (see for example Ethier
and Kurtz [8] for the definition and properties of Skohorod space).

Theorem 3.2. Assume that nP[Xn ∈ · ]
w]→ ν in M ]

b (C
+

0 ) and that ν(C+

0 \ C+
0 ) = 0.

Then, the process M̃n weakly converges in D([0,+∞),C+) as n→∞ to the superextremal
process M̃ defined by

M̃(u, t) = sup{Yi(t)1[Ui,+∞)(u); i ≥ 1}, u > 0, t ∈ T, (6)

where
∑

i≥1 δ(Yi,Ui) is a Poisson point process on C+
0 × [0,+∞) with intensity ν ⊗ `.

For the proof, we will need the following analoguous of Lemma 3.1 in the space-time
framework. Let M ]

b,p(C
+
0 × [0,+∞)) be the subset of measures µ ∈M ]

(b,p)(C
+

0 × [0,+∞))

such that µ((C+

0 \ C+
0 )× [0,+∞)) = 0 and define

C̃ =
{
µ ∈M ]

(b,p)(C
+
0 × [0,+∞)); µ(C+

0 × {u}) ≤ 1 for all u ≥ 0
}
.

In other words, a measure µ =
∑

i∈I δ(ri,si,ui) belongs to C̃ if and only if ri < +∞ for all
i ∈ I and the ui’s are pairwise distinct.

Lemme 3.2. The mapping θ̃ : M ]
(b,p)(C

+
0 ×[0,+∞))→ D([0,+∞),C+) defined by θ̃(0) ≡ 0

and
θ̃
(∑

i∈I

δ(ri,si,ui)

)
=
(

(u, t) 7→ sup{risi(t)1[ui,+∞)(u); i ∈ I}
)

is well defined and continuous on C̃.

Proof of Lemma 3.2:
The proof is similar to the proof of Lemma 3.1 and we give only the main lines.

• First we show that θ̃ is well defined. Recall that C+

0 × [0,+∞) is endowed with the
metric

d̃((r1, s1, u1), (r2, s2, u2)) = d((r1, s1), (r2, s2)) + |u2 − u1|.

9
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Let µ ∈ M ]
(b,p)(C

+
0 × [0,+∞)). For ε > 0 and M > 0, let µ(ε,M) be its restriction

to B̄ε,M = [ε,+∞] × SC+ × [0,M ]. Since B̄ε,M is bounded, µ(ε,M) has only a finite
number of atoms and we easily check that θ̃(µ(ε,M)) belongs to D([0,+∞),C+).
Furthermore, for u < M and t ∈ T ,

|θ̃(µ(ε,M))(u, t)− θ̃(µ)(u, t)| ≤ ε

so that θ̃(µ(ε,M)) converges uniformly on [0,M ]× T to θ̃(µ) as ε→ 0. The constant
M being arbitrary, this implies that θ̃(µ) ∈ D([0,+∞),C+) and that the application
θ̃ is well defined. It also holds that

sup
(u,t)∈[0,M ]×T

|θ̃(µ(ε,M))(u, t)− θ̃(µ)(u, t)| ≤ ε. (7)

• Next, we show that θ̃ is continuous on C̃.
Let {µn =

∑
i∈In δxni ; n > 1} be a sequence of M ]

(b,p)(C
+
0 × [0,+∞)) converging to

µ =
∑

i∈I δxi ∈ C̃. For all ε > 0 and M > 0, there exist ε′ < ε, M ′ > M , N ≥ 1
and some m ≥ 1, such that

∀n > N, µ(ε′,M ′)
n =

m∑
i=1

δxni and µ(ε′,M ′) =
m∑
i=1

δxi

with xni = (rni , s
n
i , u

n
i ), xi = (ri, si, ui) ∈ B̄ε′,M ′ and xni → xi as n → ∞. The

condition µ ∈ C̃ ensures that the ui’s are pairwise distinct and we can suppose
without loss of generality that u1 < · · · < um. For n large enough, we will also
have un1 < · · · < unm. Define δM ′ the metric associated with the J1-topology on
D([0,M ′],C+) by

δM ′(x, y) = inf
λ

sup
(u,t)∈[0,M ′]×T

|x(λu, t)− x(u, t)|

where the infinimum is taken over the set of non-decreasing homeomorphisms λ of
[0,M ′]. Since for large n the ui’s and the uni ’s are in the same relative order, there
exists a non-decreasing homeomorphism λnM ′ of [0,M ′] such that λnM ′(uni ) = ui for
all 1 ≤ i ≤ m. We then have

δM ′(θ̃(µ
(ε′,M ′)
n ), θ̃(µ(ε′,M ′)))

≤ δM ′(θ̃(µn)), θ̃(µ
(ε′,M ′)
n )) + δM ′(θ̃(µ

(ε′,M ′)
n ), θ̃(µ(ε′,M ′))) + δM ′(θ̃(µ

(ε′,M ′)), θ̃(µ))
≤ sup

(u,t)∈[0,M ′]×T
|max1≤i≤m(rni s

n
i (·)1[λn

M′u
n
i ,+∞)(u))− max

1≤i≤m
(risi(·)1[ui,+∞)(u))|

= max
1≤i≤m

‖rni sni − risi‖
→ 0 as n→∞.

10
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Hence, for sufficiently large n, δM ′(θ̃(µ
(ε′,M ′)
n ), θ̃(µ(ε′,M ′))) ≤ ε and thanks to Equation

(7), this entails

δM ′(θ̃(µn)), θ̃(µ))

≤ δM ′(θ̃(µn)), θ̃(µ
(ε′,M ′)
n )) + δM ′(θ̃(µ

(ε′,M ′)
n ), θ̃(µ(ε′,M ′))) + δM ′(θ̃(µ

(ε′,M ′)), θ̃(µ))
≤ 3ε.

Since M ′ is arbitrary large and ε arbitrary small, this proves the convergence θ̃(µn)
to θ̃(µ) in D([0,+∞),C+).

�

Proof of Theorem 3.2 :
The proof is very similar to the proof of Theorem 3.1. Note that M̃n = θ̃(β̃n) where β̃n is
defined by Equation (3). According to Proposition 2.1, the empirical measure β̃n weakly
converges in M(b,p)(C

+

0 × [0,+∞)) to a Poisson point process Π̃ν with intensity ν⊗ `. The
assumption ν(C+

0 \ C+
0 ) and the fact that the Lebesgue measure ` has no atoms ensure

that Π̃µ lies almost surely in C̃. From Lemma 3.2, the mapping θ̃ is continuous on C̃,
so that the continuous mapping Theorem implies θ̃(β̃n) ⇒ θ̃(Π̃ν) which is equivalent to
M̃n ⇒ M̃ . �

4 Properties of the limit process

In this section, we give some properties of the superextremal process M̃ defined by Equa-
tion (6) in Theorem 3.2. First, we characterize its finite dimensional distributions. We
use vectorial notations: for l ≥ 1, t = (t1, . . . , tl) ∈ T l, y = (y1, . . . , yl) ∈ [0,+∞)l and
u > 0, we write M̃(u, t) ≤ y if and only if M̃(u, ti) ≤ yi for all i ∈ {1, . . . , l}.

Proposition 4.1. For k > 1, 0 = u0 < u1 < · · · < uk, t ∈ T l and y1, . . . ,yk ∈
[0,+∞)l, it holds

P
[
M̃(u1, t) 6 y1, ..., M̃(uk, t) 6 yk

]
=

k∏
i=1

exp[−(uj − uj−1)ν(Aj)]

with Aj = {f ∈ C+
0 ; ∃i ∈ 1, . . . , l, f(ti) ≥ mink≥j yk,i}.
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Proof of Proposition 4.1 :
Let j ∈ {1, . . . , k}. Note that M̃(uj, t) 6 yj if and only if Π̃µ doesn’t intersect the set

Bj = {(f, u) ∈ C+
0 × [0,+∞); u ≤ uj and ∃i ∈ {1, · · · l} f(ti) > yj,i}

So, we have

P
[
M̃(u1, t) 6 y1, ..., M̃(uk, t) 6 yk

]
= P

[
Π̃ν ∩ (∪kj=1Bj) = ∅]

= exp[−(ν ⊗ `)(∪kj=1Bj)].

The Bj’s are not pairwise disjoint. To compute the measure (ν ⊗ `)(∪kj=1Bj), we observe
that

∪kj=1Bj = ∪kj=1([uj−1, uj)× Aj) ∪ ({uk} × Ak)
where the sets in the right hand side are pairwise disjoint. From this, we deduce

(ν ⊗ `)(∪kj=1Bj) =
k∑
j=1

(uj − uj−1)ν(Aj).

This proves the Proposition. �

Next we prove that the process u 7→ M̃(u, ·) is a C+-valued homogeneous Markov
process. Let Fu be the σ-algebra generated by {M̃(s, t); s ∈ [0, u], t ∈ T}. The symbol
∨ stands for poinwise maximum.

Proposition 4.2. Let u ≥ 0. The conditional distribution of (M̃(u+h, ·))h≥0 given Fu
is equal to the distribution of (M̃(u, ·) ∨ M̃ ′(h, ·))h≥0 where M̃ ′ is an independent copy of
M̃ .

In some sense, this Proposition states that the process M̃ has “independent and sta-
tionary increments” with respect to the maximum: for 0 = u0 < u1 < · · · < uk, the
distribution of (M̃(ui, ·))1≤i≤k is equal to the distribution of

(∨ij=1M̃
j(uj − uj−1, ·))1≤i≤k,

where M̃1, . . . , M̃k are i.i.d. copies of M̃ . This property is similar to the property of inde-
pendence and stationarity of increments (with respect to the addition) of Lévy processes.
For a fixed point t ∈ T , the process {M(u, t), u ≥ 0} is known as an extremal process
(see Proposition 4.7 of Resnick [19]).

Proof of Proposition 4.2:
Consider the decomposition Π̃µ = Π̃

[0,u]
ν ∪ Π̃

(u,∞)
ν where

Π̃[0,u]
ν = Π̃ν ∩ (C+

0 × [0, u]) and Π̃(u,∞)
ν = Π̃ν ∩ (C+

0 × (u,∞)).

12
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By the independence properties of the Poisson point process, Π̃
[0,u]
µ and Π̃

(u,∞)
µ are inde-

pendent. Furthermore,

M̃(u+ h, ·) = sup{rs(·)1[v,+∞)(u+ h); (r, s, v) ∈ Π̃[0,u]
ν }

∨ sup{rs(·)1[v,+∞)(u+ h); (r, s, v) ∈ Π̃(u,∞)
ν }

and the two terms in the r.h.s. are independent. It is easily seen that the first term
is equal to M̃(u, ·), and that the invariance of the Lebesgue measure ` implies that the
second term has the same distribution as M̃(h, ·). This proves the Proposition. �

In the particular case when the measure ν is homogeneous of order −α < 0, the process
M̃ enjoys further interesting properties.

Proposition 4.3. Suppose ν is homogeneous with index −α < 0. Then:

• M̃ is max-stable with index α > 0, i.e. if M̃1, . . . , M̃n are independent copies of M̃ ,
the maximum ∨ni=1M̃

i has the same law as n
1
αM̃ .

• M̃ is self-similar with index 1
α
, i.e. for all c > 0, the rescaled process (M̃(cu, ·))u≥0

has the same distribution as (c1/αM̃(cu, ·))u≥0

Proof of Proposition 4.3 :
We check that the the two processes have the same finite dimensional distributions. To
this aim, we use Proposition 4.1 and the notations of the proposition.

• Let M̃1, . . . , M̃n be independent copies of M̃ . By Proposition 4.1 and the homo-
geneity of µ,

P
[
∨ni=1 M̃

i(uj, t) 6 yj, ∀j ∈ {1, . . . , k}
]

= P
[
M̃(uj, t) 6 yj, ∀j ∈ {1, . . . , k}

]n
=

k∏
i=1

exp[−(uj − uj−1)ν(Aj)]
n

=
k∏
i=1

exp[−(uj − uj−1)ν(n−1/αAj)]

= P
[
n1/αM̃(uj, t) 6 yj, ∀j ∈ {1, . . . , k}

]
.

This proves the max-stability.

13

ha
l-0

06
27

36
8,

 v
er

si
on

 2
 - 

5 
O

ct
 2

01
1



• Similarly, the self-similarity is proven as follows:

P
[
M̃(cuj, t) 6 yj, ∀j ∈ {1, . . . , k}

]
=

k∏
i=1

exp[−c(uj − uj−1)ν(Aj)]

=
k∏
i=1

exp[−(uj − uj−1)ν(c−1/αAj)]

= P
[
c1/αM̃(uj, t) 6 yj, ∀j ∈ {1, . . . , k}

]
.

�

5 Further order statistics

The point process approach for extremes is powerful: the convergence of the empirical
measure βn entails not only the convergence of the maxima Mn but also of all the order
statistics, and a similar result hold for the space-time version of these processes.

For 1 ≤ r ≤ n and t ∈ T , defineM r
n(t) as the r-th largest value amongX1n(t), . . . , Xnn(t).

NoteM1
n(t) = Mn(t) is simply the maximum. For r > n, we use the conventionM r

n(t) = 0.
The process M r

n = (M r
n(t))t∈T is refered to as the r-th order statistic of the sample

{X1n, . . . , X1n}. Similarly, for r ≥ 1, t ∈ T and u ≥ 0 define M̃ r
n(u, t) as the r-th largest

value among X1n(t), . . . , X[nu]n(t) with the convention M̃ r
n(u, t) = 0 if r > [nu]. An

alternating definition in terms of the empirical measure β̃n is given by

M̃ r
n(u, t) = sup{y ≥ 0; β̃n(By

u,t) ≥ r}

with By
u,t = {(f, v) ∈ C+

0 × [0,+∞); f(t) ≥ y, v ≤ u} and the convention that the
supremum over an empty set is equal to zero.

With these notations, we can strengthen Theorem 3.2 as follows:

Theorem 5.1. Assume that nP[Xn ∈ · ]
w]→ ν in M ]

b (C
+

0 ) and that ν(C+

0 \ C+
0 ) =

0. Then, for each r ≥ 1, the joint order statistics (M̃1
n, . . . , M̃

r
n) weakly converges in

D([0,+∞), (C+)r) as n→∞ to (M̃1, . . . , M̃ r) defined by

M̃ j(u, t) = sup{y ≥ 0; Π̃ν ∩By
u,t ≥ r}, 1 ≤ j ≤ r, u ≥ 0, t ∈ T,

with Π̃ν a Poisson point process on C+
0 × [0,+∞) with intensity ν ⊗ `.

14

ha
l-0

06
27

36
8,

 v
er

si
on

 2
 - 

5 
O

ct
 2

01
1



The limit process M̃ j corresponds to the r-th space-time order statistic associated to
the point process Π̃ν .

Proof of Theorem 5.1 :
Using once again Proposition 2.1 and the continuous mapping Theorem, it is enough to
prove the following generalization of Lemma 3.2: the mapping

θ̃r : M ]
(b,p)(C

+
0 × [0,+∞))→ D([0,+∞), (C+)r)

defined by θ̃(0) ≡ 0 and

θ̃(β)(u, t) = (sup{y ≥ 0; β̃(By
u,t) ≥ j})1≤j≤r

is well defined and continuous on C̃. The proof is very similar to the proof of Lemma 3.2
and the details are omitted for the sake of brevity. �

6 Gaussian case

In geostatistics, Gaussian processes are often used as spatial models. In the finite-
dimensional setting, the asymptotic behavior of the maxima of Gaussian random vectors
was first investigated by Huesler and Reiss [13]. Recently, Kabluchko, Schlather and de
Haan [15] and Kabluchko [14] consider the functional setting and prove convergence of the
maxima of i.i.d. centered Gaussian processes under suitable conditions on their covariance
structure. The family of Brown-Resnick processes has quickly become a popular model
for spatial extremes due to its simple characterization by a negative definite functions.
Our purpose here is to revisit their results and apply the present framework: we put the
emphasis on regular variations and point processes. In the sequel, we follow the approach
by Kabluchko, see Theorems 2 and 6 in [14].

We suppose that (T, d) is a compact metric space satisfying the entropy condition∫ 1

0

(logN(ε))1/2dε <∞,

where N(ε) is the smallest number of balls of radius needed to cover T .
Let Zn = {Zn(t); t ∈ T}, n ≥ 1, be a sequence of continuous zero-mean unit-variance
Gaussian processes with covariance function

rn(t1, t2) = E[Zn(t1)Zn(t2)], t1, t2 ∈ T.

15

ha
l-0

06
27

36
8,

 v
er

si
on

 2
 - 

5 
O

ct
 2

01
1



Define the scaling sequence

bn = (2 log n)1/2 − (2 log n)−1/2((1/2) log log n+ log(2
√
π)), n ≥ 1 (8)

and the rescaled process

Yn(t) = bn(Zn(t)− bn), t ∈ T.

We consider the log-normal process

Xn(t) = expYn(t), t ∈ T.

Theorem 6.1. Fix t0 ∈ T and suppose that:

i ) Uniformly in t1, t2 ∈ T :

Γ(t1, t2) = lim
n→∞

4 log n(1− rn(t1, t2)) ∈ [0,∞). (9)

ii ) For all t1, t2 ∈ T , there exists C > 0 such that

sup
n>1

log n(1− rn(t1, t2)) 6 Cd(t1, t2). (10)

Then,
lim
n→∞

nP[Xn ∈ · ]
w]−→ ν(·) in M ]

b (C
+

0 ),

where
ν(A) =

∫ ∞
0

P[weW (·)− 1
2

Γ(t0,·) ∈ A]w−2dw, A ⊆ C+
0 Borel set,

and {W (t), t ∈ T} a centered Gaussian process such that W (t0) = 0 and with incremental
variance Γ.

Following [14, 15], we define Y w
n the process Yn conditioned by Yn(t0) = w and we

note µwn (t) = E[Y w
n (t)]. We will need the following two Lemmas.

Lemme 6.1. Under conditions i) and ii) of Theorem 6.1, the family {Y w
n ; n ≥ 1} is tight

in C(T ) for all fixed ω ∈ R, as well as the family {Y w
n − µwn ; w ∈ R, n ≥ 1}.

Lemma 6.1 follows from the proof of Theorem 6 in [14] (see also the proof of Theorem
17 in [15]). Details are omitted here.
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Lemme 6.2. Under condition i) of Theorem 6.1, the following convergence in the sense
of finite dimensional distributions holds: as n→∞,

{Y w
n (t), t ∈ T} f.d.d.−→ {w +W (t)− 1

2
Γ(t, t0), t ∈ T}

with W defined in Theorem 6.1

Proof of Lemma 6.2 :
Standard computations for Gaussian processes entails that Y w

n is a Gaussian process with
mean and covariance

µwn (t) = wrn(t, t0) + b2
n(rn(t, t0)− 1), (11)

Cov[Y w
n (t1), Y w

n (t2)] = b2
n (rn(t1, t2)− rn(t1, t0)rn(t2, t0)) . (12)

Under assumption i), it holds

lim
n→∞

µwn (t) = w − 1

2
Γ(t, t0)

and
lim
n→∞

Cov[Y w
n (t1), Y w

n (t2)] =
1

2
(Γ(t1, t0) + Γ(t2, t0)− Γ(t1, t2)).

This implies that Var(Y w
n (t2)− Y w

n (t1))→ Γ(t1, t2) and proves the Lemma. �

Proof of Theorem 6.1 :
Our proof relies on the following criterion for ]-convergence in C+

0 by Hult et Lindskog.
According to Theorem 4.4 of [12], it is enough to prove that:

i) for every r > 0, sup
n≥1

nP[supt∈K Xn(t) > r] <∞;

ii) for every ε > 0, lim
δ→0

sup
n≥1

nP[ωXn(δ) > ε] = 0,

where ωf (δ) = sup{|f(t1) − f(t2)|; t1, t2 ∈ T, d(t1, t2) ≤ δ} denotes the modulus of
continuity of f ∈ C(T );

iii) nP[Xn ∈ · ]→ ν in the sense of finite-dimensional convergence.

These three points are proven below. At several places, we will use that the scaling se-
quence bn defined by Equation (8) satisfies

√
2πbne

b2n/2 ∼ n as n→∞. As a consequence,
the sequence

n√
2πbneb

2
n/2

is bounded by some constant M > 0.
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• Proof of i):
Let r > 0 and r̃ = ln r. We have

nP[sup
t∈T

Xn(t) > r] = nP[sup
t∈T

Yn(t) > r̃]

=
n√

2πbneb
2
n/2

∫
R
e−w−w

2/2b2nP[sup
t∈T

Y w
n (t) > r̃]dw

≤ M

∫
R
e−wP[sup

t∈T
Y w
n (t) > r̃]dw,

so that
sup
n≥1

nP[sup
t∈T

Xn(t) > r] ≤M

∫
R
e−w sup

n≥1
P[sup

t∈T
Y w
n (t) > r̃]dw. (13)

First, we have∫ +∞

0

e−w sup
n≥1

P[sup
t∈T

Y w
n (t) > r̃]dw 6

∫ +∞

0

e−wdw <∞. (14)

By tightness of the family {Y w
n − µwn ; w ∈ R, n ≥ 1} (see Lemme 6.1), there exists

c1 > 0 such that for all n ≥ 1 and w ∈ R,

P[sup
t∈T

(Y w
n (t)− µwn (t)) > c1] <

1

2
.

Furthermore, Equations (11)-(12) and assumption ii) of Theorem 6.1 together imply
that there are some c2, c3 > 0 and n0 ≥ 1 such that for all n ≥ n0 and all w < 0,

sup
t∈T

µwn (t) 6
1

2
w + c2, and sup

t∈T
Var[Y w

n (t)] 6 c2
3.

Applying Borell’s inequality (see Theorem D.1 in [17]), we obtain

P[sup
t∈T

Y w
n (t) > r̃] < 2ψ

(
− r̃ − w/2− c1 − c2

c3

)
≤ 2e

−(
r̃−w/2−c1−c2

c3
)2
, w < 0,

where ψ is the tail of the standard Gaussian distribution. Consequently,∫ 0

−∞
e−w sup

n≥n0

P[sup
t∈T

Y w
n (t) > r̃]dw < 2

∫ 0

−∞
e−we

−(
r̃−w/2−c1−c2

c3
)2
dw <∞. (15)

Equations (14) and (15) together imply∫
R
e−w sup

n≥1
P[sup

t∈T
Y w
n (t) > r̃]dw <∞. (16)

In view of Equation (13), this proves i).
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• Proof of ii):
For δ > 0, we have

sup
n≥1

nP[ωXn(δ) > ε] = sup
n≥1

n√
2πbneb

2
n/2

∫
R
e
−w− w2

2b2n P[ωeY wn (δ) > ε]dw

≤ M

∫
R
e−w sup

n≥1
P[ωeY wn (δ) > ε]dw.

We will apply Lebesgue dominated convergence Theorem to prove that this has limit
zero as δ → 0. Lemma 6.1 implies that for every fixed w, the sequence {eY wn ; n > 1}
is tight so that

lim
δ→0

e−w sup
n≥1

P[ωeY wn (δ) > ε] = 0.

It remains to prove a suitable domination condition: since δ 7→ P[ωeY wn (δ) > ε] is a
nondecreasing function, it is enough to prove that for some δ0 > 0∫

R
e−w sup

n≥1
P[ωeY wn (δ0) > ε]dw <∞.

Since ωeY wn (δ0) ≤ exp[supt∈T Y
w
n (t)], we have

e−w sup
n≥1

P[ωeY wn (δ0) > ε] 6 e−w sup
n≥1

P[sup
t∈T

Y w
n (t) > ln ε].

Equation (16) with r̃ = ln ε provides the required domintation condition.

• Proof of iii):
We have to prove that for all set A ⊆ C

+

0 of the form

A = {f ∈ C+
0 ;∃j ∈ [[1, k]], f(tj) > xk}, k ≥ 1, t1, . . . , tk ∈ T, x1, . . . , xk ∈ (0,+∞),

it holds
lim
n→∞

nP[Xn ∈ A] = ν(A).

Letting yj = lnxj, we have

nP[Xn ∈ A] = nP[∃j ∈ [[1, k]], Xn(tj) > xj]

= nP[∃j ∈ [[1, k]], Yn(tj) > yj]

=
n√

2πbneb
2
n/2

∫
R
e
−w− w2

2b2nP[∃j ∈ [[1, k]], Y w
n (tj) > yj]dw

∼
∫
R
e
−w− w2

2b2n P[∃j ∈ [[1, k]], Y w
n (tj) > yj]dw.
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We will apply once again Lebesgue’s dominated convergence Theorem. Lemma 6.2
entails

P[∃j ∈ [[1, k]], Y w
n (tj) > yj]→ P[∃j ∈ [[1, k]], w +W (tj)−

1

2
Γ(tj, t0) > yj],

so that we expect

nP[Xn ∈ A] →
∫
R
e−wP[∃j ∈ [[1, k]], w +W (tj)−

1

2
Γ(tj, t0) > yj]dw

=

∫ ∞
0

P[∃j ∈ [[1, k]], weW (tj)− 1
2

Γ(tj ,t0) > xj]w
−2dw

= ν(A).

We are left to prove a suitable domination condition: for all n ≥ 1, we have

e
−w− w2

2b2n P[∃j ∈ [[1, k]], Y w
n (tj) > yj] ≤ e−w sup

n≥1
P[sup

t∈T
Y w
n (t) > r̃]

with r̃ = min1≤j≤k yj. Equation (16) yields the required domination condition.

�
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