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a b s t r a c t

Weconsider the problemof the convergence of the so-called LePage series in the Skorokhod
space Dd

= D([0, 1], Rd) and provide a simple criterion based on the moments of the
increments of the random process involved in the series. This provides a simple sufficient
condition for the existence of an α-stable distribution on Dd with given spectral measure.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We are interested in the convergence in the Skorokhod space Dd
= D([0, 1], Rd) endowed with the J1-topology of

random series of the form

X(t) =

∞−
i=1

Γ
−1/α
i εiYi(t), t ∈ [0, 1], (1)

where α ∈ (0, 2) and:

– (Γi)i≥1 is the increasing enumeration of the points of a Poisson point process on [0, +∞) with Lebesgue intensity;
– (εi)i≥1 is an i.i.d. sequence of real random variables;
– (Yi)i≥1 is an i.i.d. sequence of Dd-valued random variables;
– the sequences (Γi), (εi) and (Yi) are independent.

Note that a more constructive definition for the sequence (Γi)i≥1 is given by

Γi =

i−
j=1

γj, i ≥ 1,
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where (γi)i≥1 is an i.i.d. sequence of random variables with exponential distribution of parameter 1, and independent of (εi)
and (Yi).

Series of the form (1) are known as LePage series. For fixed t ∈ [0, 1], the convergence in Rd of the series (1) is ensured
as soon as one of the following conditions is satisfied:

– 0 < α < 1, E|ε1|
α < ∞ and E|Y1(t)|α < ∞,

– 1 ≤ α < 2, Eε1 = 0, E|ε1|
α < ∞ and E|Y1(t)|α < ∞.

Here |.| denotes the usual Euclidean norm on R or on Rd. The random variable X(t) has then an α-stable distribution on
Rd. Conversely, it is well known that any α-stable distributions on Rd admits a representation in terms of LePage series (see
for example Samorodnitsky and Taqqu (1994), Section 3.9).

There is a vast literature on symmetric α-stable distributions on separable Banach spaces (see e.g. Ledoux and Talagrand
(1991), Araujo and Giné (1980)). In particular, any symmetric α-stable distribution on a separable Banach space can be
represented as an almost surely convergent LePage series (see Corollary 5.5 in Ledoux and Talagrand (1991)). The existence
of a symmetric α-stable distribution with a given spectral measure is not automatic and is linked with the notion of stable
type of a Banach space; see Theorem 9.27 in Ledoux and Talagrand (1991) for a precise statement. Davydov et al. (2008)
consider α-stable distributions in the more general framework of abstract convex cones.

The space Dd equipped with the norm

‖x‖ = sup{|xi(t)|, t ∈ [0, 1], i = 1, . . . , d}, x = (x1, . . . , xd) ∈ Dd,

is a Banach space but is not separable. The uniform topology associated with this norm is finer than the J1-topology. On
the other hand, the space Dd with the J1-topology is Polish, i.e. there exists a metric on Dd compatible with the J1-topology
that makes Dd a complete and separable metric space. However, such a metric cannot be compatible with the vector space
structure since the addition is not continuous in the J1-topology. These properties explain why the general theory of stable
distributions on separable Banach space cannot be applied to the space Dd.

Nevertheless, in the case where the series (1) converges, the distribution of the sum X defines an α-stable distribution
on Dd. We can determine the associated spectral measure σ on the unit sphere Sd

= {x ∈ Dd
; ‖x‖ = 1 }. It is given by

σ(A) =

E

|ε1|

α
‖Y1‖

α1{sign(ε1)Y1/‖Y1‖∈A}


E(|ε1|α‖Y1‖

α)
, A ∈ B(Sd).

This is closely related to regular variations theory (see Hult and Lindskog (2006), Davis and Mikosch (2008)). For all r > 0
and A ∈ B(Sd) such that σ(∂A) = 0, it holds that

lim
n→∞

nP


X
‖X‖

∈ A | ‖X‖ > rbn


= r−ασ(A),

with

bn = inf{r > 0; P(‖X‖ < r) ≤ n−1
}, n ≥ 1.

The random variable X is said to be regularly varying in Dd with index α and spectral measure σ .
In this framework, convergence of the LePage series (1) in Dd is known in some particular cases only:

– When 0 < α < 1, E|ε1|
α < ∞ and E‖Y1‖

α < ∞, the series (1) converges almost surely uniformly in [0, 1] (see example
4.2 in Davis and Mikosch (2008)).

– When 1 ≤ α < 2, the distribution of the εi’s is symmetric, E|ε1|
α < ∞ and Yi(t) = 1[0,t](U) with (Ui)i≥1 an i.i.d.

sequence of random variables with uniform distribution on [0, 1], the series (1) converges almost surely uniformly on
[0, 1] and the limit process X is a symmetric α-stable Lévy process (see Rosiński (2001)).

The purpose of this note is to complete these results and to provide a general criterion for almost sure convergence in Dd

of the random series (1). Our main result is the following:

Theorem 1. Suppose that 1 ≤ α < 2,

Eε1 = 0, E|ε1|
α < ∞ and E‖Y1‖

α < ∞.

Suppose furthermore that there exist β1, β2 > 1
2 and F1, F2 nondecreasing continuous functions on [0, 1] such that, for all

0 ≤ t1 ≤ t ≤ t2 ≤ 1,

E|Y1(t2) − Y1(t1)|2 ≤ |F1(t2) − F1(t1)|β1 , (2)

E|Y1(t2) − Y1(t)|2|Y1(t) − Y1(t1)|2 ≤ |F2(t2) − F2(t1)|2β2 . (3)

Then, the LePage series (1) converges almost surely in Dd.

The proof of this theorem is detailed in the next section. We provide hereafter a few cases where Theorem 1 can be
applied.
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Example 1. The example considered byDavis andMikosch (2008) follows easily fromTheorem1: letU be a randomvariable
with uniform distribution on [0, 1] and consider Y1(t) = 1[0,t](U), t ∈ [0, 1]. Then, for 0 ≤ t1 ≤ t ≤ t2 ≤ 1,

E(Y1(t2) − Y1(t1))2 = t2 − t1 and E(Y1(t2) − Y1(t))2(Y1(t) − Y1(t1))2 = 0,

so conditions (2) and (3) are satisfied.

Example 2. Example 1 can be generalized in the following way: let p ≥ 1, (Ui)1≤i≤p independent random variables on [0, 1]
and (Ri)1≤i≤p random variables on Rd. Consider

Y1(t) =

p−
i=1

Ri1[0,t](Ui).

Assume that for each i ∈ {1, . . . , p}, the cumulative distribution function Fi ofUi is continuous on [0, 1]. Assume furthermore
that there is someM > 0 such that for all i ∈ {1, . . . , p}

E[R4
i | FU ] ≤ M almost surely, (4)

where FU = σ(U1, . . . ,Up). This is for example the case when the Ri’s are uniformly bounded byM1/4 or when the Ri’s have
finite fourth moment and are independent of the Ui’s. Simple computations entail that under condition (4), it holds for all
0 ≤ t1 ≤ t ≤ t2 ≤ 1 that

E(Y1(t2) − Y1(t1))2 ≤ M1/2p2|F(t2) − F(t1)|2

and

E(Y1(t2) − Y1(t))2(Y1(t) − Y1(t1))2 ≤ Mp4|F(t2) − F(t1)|4.

with F(t) =
∑p

i=1 Fi(t). So conditions (2) and (3) are satisfied and Theorem 1 can be applied in this case.

Example 3. A further natural example is the case where Y1(t) is a Poisson process with intensity λ > 0 on [0, 1]. Then, for
all 0 ≤ t1 ≤ t ≤ t2 ≤ 1,

E(Y1(t2) − Y1(t1))2 = λ|t2 − t1| + λ2
|t2 − t1|2

and

E(Y1(t2) − Y1(t))2(Y1(t) − Y1(t1))2 = (λ|t2 − t| + λ2
|t2 − t|2)(λ|t − t1| + λ2

|t − t1|2)

and we easily see that conditions (2) and (3) are satisfied.

2. Proof

For the sake of clarity, we divide the proof of Theorem 1 into five steps.
Step 1. According to Lemma 1.5.1 in Samorodnitsky and Taqqu (1994), it holds almost surely that for k large enough,

|Γ
−1/α
k − k−1/α

| ≤ 2α−1k−1/α


ln ln k

k
. (5)

This implies the a.s. convergence of the series
∞−
i=1

|Γ
−1/α
i − i−1/α

| |εi| ‖Yi‖ < ∞. (6)

The series (6) does indeed have nonnegative terms, and (5) implies that the following conditional expectation is finite:

E


∞−
i=1

|Γ
−1/α
i − i−1/α

| |εi| ‖Yi‖

 FΓ


= E|ε1| E‖Yi‖

∞−
i=1

|Γ
−1/α
i − i−1/α

|

where FΓ = σ(Γi, i ≥ 1).
This proves that (6) holds true and it is enough to prove the a.s. convergence in Dd of the series

Z(t) =

∞−
i=1

i−1/αεiYi(t), t ∈ [0, 1], (7)

Step 2. Next, consider

Z(t) =

∞−
i=1

i−1/α ε̃iYi(t), t ∈ [0, 1]. (8)
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with

ε̃i = εi1{|εi|α≤i}, i ≥ 1.

We prove that the series (7) and (8) differ only by a finite number of terms. We have indeed

∞−
i=1

P (ε̃i ≠ εi) =

∞−
i=1

P (|εi|
α > i) ≤ E|ε1|

α < ∞

and the Borel–Cantelli lemma implies that almost surely ε̃i = εi for i large enough. So, the two series (7) and (8) have the
same nature and it is enough to prove the convergence in Dd of the series (8).

Step 3. As a preliminary for step 4, we prove several estimates involving the moments of the random variables (ε̃i)i≥1.
First, for allm > α,

C(α,m) :=

∞−
i=1

i−m/αE(|ε̃i|
m) < ∞. (9)

We have indeed

C(α,m) =

∞−
i=1

i−m/αE(|εi|
m1{|εi|≤i1/α})

= E


|ε1|

m
∞−
i=1

i−m/α1{i≥|ε1|α}


≤ CE(|ε1|

m
|ε1|

α−m) = CE(|ε1|
α) < ∞

where the constant C = supx>0 xm/α−1∑
i≥x i

−m/α is finite since form > α

lim
x→∞

xm/α−1
∞−
i≥x

i−m/α
=

α

m − α
.

Similarly, we also have

C(α, 1) :=

∞−
i=1

i−1/α
|E(ε̃i)| < ∞. (10)

Indeed, the assumption Eεi = 0 implies E(ε̃i) = E(εi1{|εi|α>i}). Hence,

∞−
i=1

i−1/α
|E(ε̃i)| ≤

∞−
i=1

i−1/αE(|ε1|1{|ε1|>i1/α})

= E

|ε1|

[|ε1|
α
]−

i=1

i−1/α


≤ E

|ε1|C ′(|ε1|

α)1−1/α


= C ′E|ε1|
α < ∞

where the constant C ′
= supx>0 x1/α−1∑[x]

i=1 i
−1/α is finite.

Step 4. For n ≥ 1, consider the partial sum

Zn(t) =

n−
i=1

i−1/α ε̃iYi(t), t ∈ [0, 1]. (11)

We prove that the sequence of processes (Zn)n≥1 is tight in Dd. Following Theorem 3 in Gikhman and Skorokhod (2004),
Chapter 6, Section 3, it is enough to show that there exists β > 1/2 and a nondecreasing continuous function F on [0, 1]
such that

E|Zn(t2) −Zn(t)|2|Zn(t) −Zn(t1)|2 ≤ |F(t2) − F(t1)|2β , (12)

for all 0 ≤ t1 ≤ t ≤ t2 ≤ 1. Remark that in Gikhman and Skorokhod (2004), the result is stated only for F(t) ≡ t . However,
the case of a general continuous nondecreasing function F follows easily from a simple change of variable.
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We use the notation Y (t) = (Y p(t))1≤p≤d, [[1, n]] = {1, . . . , n} and i = (i1, i2, i3, i4) ∈ [[1, n]]4. We have

E|Zn(t2) −Zn(t)|2|Zn(t) −Zn(t1)|2 = E

 n−
i=1

i−1/α ε̃i(Yi(t) − Yi(t1))


2  n−

j=1

j−1/α ε̃j(Yj(t2) − Yj(t))


2

=

−
1≤p,q≤d

−
i∈[[1,n]]4

(i1i2i3i4)−1/αE(ε̃i1 ε̃i2 ε̃i3 ε̃i4)E[(Y p
i1
(t) − Y p

i1
(t1)) (13)

(Y p
i2
(t) − Y p

i2
(t1))(Y

q
i3
(t2) − Y q

i3
(t))(Y q

i4
(t2) − Y q

i4
(t))] (14)

≤ d2
−

i∈[[1,n]]4
(i1i2i3i4)−1/α

|E(ε̃i1 ε̃i2 ε̃i3 ε̃i4)|Di(t, t1, t2) (15)

where

Di(t, t1, t2) = E|Yi1(t) − Yi1(t1)‖Yi2(t) − Yi2(t1)‖Yi3(t2) − Yi3(t) ‖ Yi4(t2) − Yi4(t)|.

Consider ∼i, the equivalence relation on {1, . . . , 4} defined by

j∼i j′ if and only if ij = ij′ .

Let P be the set of all partitions of {1, . . . , 4} and τ(i) be the partition of {1, 2, 3, 4} given by the equivalence classes of ∼i.
We introduce these definitions because, since the Yi’s are i.i.d., the termDi(t, t1, t2) depends on i only through the associated
partition τ(i). For example, if τ(i) = {1, 2, 3, 4}, i.e. if i1 = i2 = i3 = i4, then

Di(t, t1, t2) = E|Y1(t) − Y1(t1)|2|Y1(t2) − Y1(t)|2.

Or if τ(i) = {1} ∪ {2} ∪ {3} ∪ {4}, i.e. if the indices i1, . . . , i4 are pairwise distinct, then

Di(t, t1, t2) = (E|Y1(t) − Y1(t1)|E|Y1(t2) − Y1(t)|)2.

For τ ∈ P , we denote by Dτ (t, t1, t2) the common value of the terms Di(t, t1, t2) corresponding to indices i such that
τ(i) = τ . Define also

Sn,τ =

−
i∈{1,...,n}4;τ(i)=τ

(i1i2i3i4)−1/α
|E(ε̃i1 ε̃i2 ε̃i3 ε̃i4)|.

With this notation, Eq. (15) can be rewritten as

E|Zn(t2) −Zn(t)|2|Zn(t) −Zn(t1)|2 ≤ d2
−
τ∈P

Sn,τDτ (t, t1, t2). (16)

Under conditions (2) and (3), we will prove that for each τ ∈ P , there exist βτ > 1/2, a nondecreasing continuous function
Fτ on [0, 1] and a constant Sτ > 0 such that

Dτ (t, t1, t2) ≤ |Fτ (t1) − Fτ (t2)|2βτ , 0 ≤ t1 ≤ t ≤ t2, (17)

and

Sn,τ ≤ Sτ , n ≥ 1. (18)

Eqs. (16)–(18) together imply inequality (12) for some suitable choices of β > 1/2 and F .
It remains to prove inequalities (17) and (18). If τ = {1, 2, 3, 4},

Dτ (t, t1, t2) ≤ E|Y1(t) − Y1(t1)|2|Y1(t2) − Y1(t)|2 ≤ |F2(t2) − F2(t1)|2β2

and

Sτ
n =

n−
i=1

i−4/αEε̃4
i ≤ C(α, 4).

If τ = {1} ∪ {2} ∪ {3} ∪ {4}, the Cauchy–Schwartz inequality entails

Dτ (t, t1, t2) ≤ (E|Y1(t) − Y1(t1)|E|Y1(t2) − Y1(t)|)2 ≤ |F1(t2) − F1(t1)|2β1

and

Sτ
n ≤

−
i∈{1,...,n}4;τ(i)=τ

(i1i2i3i4)−1/α
|Eε̃i1‖Eε̃i2‖Eε̃i3 ‖ Eε̃i4 | ≤ C(α, 1)4.
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Similarly, for τ = {1, 2, 3} ∪ {4},

Dτ (t, t1, t2) = E|Y1(t) − Y1(t1)|2|Y1(t2) − Y1(t)|E|Y1(t2) − Y1(t)|
≤ |F1(t) − F1(t1)|β1/2|F2(t2) − F2(t1)|β2 |F1(t2) − F1(t)|β1/2

≤ |(F1 + F2)(t2) − (F1 + F2)(t1)|β1+β2

and

Sτ
n ≤

−
1≤i≠j≤n

(i3j)−1/αE|ε̃i|
3
|Eε̃j| ≤ C(α, 3)C(α, 3).

or for τ = {1, 2} ∪ {3} ∪ {4},

Dτ (t, t1, t2) = E|Y1(t) − Y1(t1)|2(E|Y1(t2) − Y1(t)|)2

≤ |F1(t) − F1(t1)|β1 |F1(t2) − F1(t)|β1

≤ |F1(t2) − F1(t1)|2β1

and

Sτ
n ≤

−
1≤i≠j≠k≤n

(i2jk)−1/αE|ε̃i|
2
|Eε̃j ‖ Eε̃k| ≤ C(α, 2)C(α, 1)2.

Similar computations can be checked in all remaining cases. The cardinality of P is equal to 13.
Step 5. We prove Theorem 1. For each fixed t ∈ [0, 1], Kolmogorov’s three-series theorem implies thatZn(t) converges
almost surely as n → ∞. So the finite-dimensional distributions of (Zn)n≥1 converge. The tightness in Dd of the sequence
has already been proved in step 4, so (Zn)n≥1 weakly converges in Dd as n → ∞. We then apply Theorem 1 of Kallenberg
(1974) and deduce thatZn converges almost surely inDd. In view of step 1 and step 2, this yields the almost sure convergence
of the series (1). �
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