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1. Introduction

We are interested in the convergence in the Skorokhod space D¢ = ID([0, 1], RY) endowed with the J;-topology of
random series of the form

X =y r o eyit), telo,1], (1)
i=1

where o € (0, 2) and:

- (I7)i>1 is the increasing enumeration of the points of a Poisson point process on [0, +-00) with Lebesgue intensity;
- (&i)i>1 Is an i.i.d. sequence of real random variables;

- (Y3)i>1 is an i.i.d. sequence of D9-valued random variables;

the sequences (73), (&;) and (Y;) are independent.

Note that a more constructive definition for the sequence (I5);>1 is given by

i
n=>y iz,
j=1
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where (y;);>1 is an i.i.d. sequence of random variables with exponential distribution of parameter 1, and independent of (&;)
and (Y;).

Series of the form (1) are known as LePage series. For fixed t € [0, 1], the convergence in R? of the series (1) is ensured
as soon as one of the following conditions is satisfied:

-0< o< 1,E|lg]|* <ooand E|Y;(t)]|* < oo,
-1<a<2Ee =0,E|e1|* <ocoand E|Y;(t)]|* < oc.

Here |.| denotes the usual Euclidean norm on IR or on R%. The random variable X (t) has then an «-stable distribution on
RY. Conversely, it is well known that any a-stable distributions on R? admits a representation in terms of LePage series (see
for example Samorodnitsky and Taqqu (1994), Section 3.9).

There is a vast literature on symmetric «-stable distributions on separable Banach spaces (see e.g. Ledoux and Talagrand
(1991), Araujo and Giné (1980)). In particular, any symmetric «-stable distribution on a separable Banach space can be
represented as an almost surely convergent LePage series (see Corollary 5.5 in Ledoux and Talagrand (1991)). The existence
of a symmetric a-stable distribution with a given spectral measure is not automatic and is linked with the notion of stable
type of a Banach space; see Theorem 9.27 in Ledoux and Talagrand (1991) for a precise statement. Davydov et al. (2008)
consider «-stable distributions in the more general framework of abstract convex cones.

The space D equipped with the norm

[|x]| = sup{|x;(t)|, t € [0,1],i=1,...,d}, x=(X1,...,Xq) € IDJd,

is a Banach space but is not separable. The uniform topology associated with this norm is finer than the J;-topology. On
the other hand, the space D with the J;-topology is Polish, i.e. there exists a metric on D¢ compatible with the J;-topology
that makes D a complete and separable metric space. However, such a metric cannot be compatible with the vector space
structure since the addition is not continuous in the J;-topology. These properties explain why the general theory of stable
distributions on separable Banach space cannot be applied to the space D*.

Nevertheless, in the case where the series (1) converges, the distribution of the sum X defines an «-stable distribution
on D¢. We can determine the associated spectral measure o on the unit sphere S = {x € D% |x|| = 1}.Itis given by

E(|81 I IY 11 Visigneery v /vy ueA})
E(leq]*{1Y111*)

This is closely related to regular variations theory (see Hult and Lindskog (2006), Davis and Mikosch (2008)). For all r > 0
and A € B(SY) such that ¢ (3A) = 0, it holds that

o(A) = , Ae B(SY.

X
lim nP (— eA| IX|| > rb,,) =r"%(A),
n—00 IX 1l

with
b, =inf{r > 0; P(JX|| <r)<n"'}, n>1.

The random variable X is said to be regularly varying in D¢ with index « and spectral measure o.
In this framework, convergence of the LePage series (1) in D¢ is known in some particular cases only:

- When0 < o < 1,E|g1]* < coand E||Y,]|* < oo, the series (1) converges almost surely uniformly in [0, 1] (see example
4.2 in Davis and Mikosch (2008)).

- When 1 < a < 2, the distribution of the &s is symmetric, E|e1|* < oo and Y;i(t) = 1jo,4(U) with (Ui an i.i.d.
sequence of random variables with uniform distribution on [0, 1], the series (1) converges almost surely uniformly on
[0, 1] and the limit process X is a symmetric «-stable Lévy process (see Rosinski (2001)).

The purpose of this note is to complete these results and to provide a general criterion for almost sure convergence in D¢
of the random series (1). Our main result is the following:

Theorem 1. Suppose that 1 < @ < 2,
Ee; =0, Ele1|* < oo and E|Yq|* < oc.

Suppose furthermore that there exist 1, B2 > % and F;, F, nondecreasing continuous functions on [0, 1] such that, for all
0<t1<t=<t =<1

ElY:(ty) = Y1(t)* < |Fi(t2) — Fi(e)I™, (2)
E|Y1(t2) — Y1) P|Y1(0) — Yi(t)* < |Fa(ty) — Fa(6) 2. (3)
Then, the LePage series (1) converges almost surely in D.

The proof of this theorem is detailed in the next section. We provide hereafter a few cases where Theorem 1 can be
applied.
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Example 1. The example considered by Davis and Mikosch (2008) follows easily from Theorem 1: let U be a random variable
with uniform distribution on [0, 1] and consider Y;(t) = 1jo,q(U), t € [0, 1]. Then,for0 < t; <t <t, <1,

E(Yi(t) — Yi(t)? =t —t; and E(Yi() — Yi(0)*(Y1(t) — Yi(t1))* =0,
so conditions (2) and (3) are satisfied.

Example 2. Example 1 can be generalized in the following way: let p > 1, (U)1<i<p independent random variables on [0, 1]
and (R;)1<i<p random variables on RY. Consider

p
Y1(t) = > Riljo.q(Uy).
i=1

Assume that foreachi € {1, ..., p}, the cumulative distribution function F; of U; is continuous on [0, 1]. Assume furthermore
that there is some M > 0 such that foralli € {1, ..., p}

E[R! | Fy] <M almost surely, (4)

where #y = o (Uy, ..., Up). This is for example the case when the R;’s are uniformly bounded by M4 or when the R;’s have
finite fourth moment and are independent of the U;’s. Simple computations entail that under condition (4), it holds for all
0§t1§t§t2§1that

E(Y1(2) — Y1(t1)* < M2p2[F(ty) — F(ty)?
and
E(Y1(62) — Y1()2(Y1(t) — Y1(t:))* < Mp*|F(ty) — F(t1)[*.

with F(t) = f=1 F;(t). So conditions (2) and (3) are satisfied and Theorem 1 can be applied in this case.

Example 3. A further natural example is the case where Y;(t) is a Poisson process with intensity A > 0 on [0, 1]. Then, for
alo<f <t<t <1,

E(Y1(6) — Yi(t1))? = Aty — t1] + A2ty — 6
and
E(Y1(t2) — Y1(£)*(Y1() — Y1(t1))* = Mtz — t] + 22|t — 1) (M|t — t1] + 22|t — t1]%)

and we easily see that conditions (2) and (3) are satisfied.
2. Proof

For the sake of clarity, we divide the proof of Theorem 1 into five steps.
Step 1. According to Lemma 1.5.1 in Samorodnitsky and Taqqu (1994), it holds almost surely that for k large enough,

_ Inlnk
|rVe — Ve < g ke (5)
k k

This implies the a.s. convergence of the series
o0
I = e 1) < oo (6)
i=1

The series (6) does indeed have nonnegative terms, and (5) implies that the following conditional expectation is finite:

o0 (o]
-1 — -1 —
E[Zm i ‘/“||si|||Y,-||‘fr}=E|81|E||Y,-|| Yol =i
i=1

i=1
where Fr = o (I},i > 1).
This proves that (6) holds true and it is enough to prove the a.s. convergence in D¢ of the series

o0
Z(t)y =Y i "eYi(t), tel0,1], 7)
i=1
Step 2. Next, consider

Z(t) = Z iVegyi(t), telo,1]. (8)

i=1
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with

&= 81‘1“8”0151'], i>1.
We prove that the series (7) and (8) differ only by a finite number of terms. We have indeed

o0 o0

D PG #e) =) P(lal* > i) <Eley|* < 00

i=1 i=1
and the Borel-Cantelli lemma implies that almost surely & = ¢; for i large enough. So, the two series (7) and (8) have the
same nature and it is enough to prove the convergence in D? of the series (8).

Step 3. As a preliminary for step 4, we prove several estimates involving the moments of the random variables (&;);>.
First, forallm > «,

o0
Clar,m) =Y i ™*E(|&|™) < oo. (9)
i=1
We have indeed

[ee]
Cla,m) = i ™E(|ei| ™ gy <it/e)
i=1

(wzl )

CE(le1|™le1]*™™) = CE(l&1]*) < o0

IA

where the constant C = sup,. o x™*~! D iox i~™ s finite since for m > o

o0
o
lim x™e=1 “me — ——
X—>00 ; m-—uo
Similarly, we also have
o0
Cla, 1) =Y i ™E@E)| < oo. (10)

i=1

Indeed, the assumption Eg; = 0 implies E(&;) = E(g;1y«~;). Hence,

o0 o0
Y VRG] < i E(e |10, e
i=1 i=1
[le1]%]
=5(jeal Y i)
i=1
< B(Je1IC'lea|)' ") = C'Bley|* < o0

where the constant C’ = sup,. o x"/%~1 YW i~1/¢ i finite.

Step 4. For n > 1, consider the partial sum
~ n
Zo() =Y i EYi(D), telo,1]. (11)
i=1

We prove that the sequence of processes (fn)nzl is tight in DY. Following Theorem 3 in Gikhman and Skorokhod (2004),
Chapter 6, Section 3, it is enough to show that there exists 8 > 1/2 and a nondecreasing continuous function F on [0, 1]
such that

E|Zy(t) — Zn()21Z0(t) — Za(t)? < |F(t2) — F(t1)|?, (12)

forall0 < t; <t < t; < 1.Remark that in Gikhman and Skorokhod (2004), the result is stated only for F(t) = t. However,
the case of a general continuous nondecreasing function F follows easily from a simple change of variable.



Y. Davydov, C. Dombry / Statistics and Probability Letters 82 (2012) 145-150 149

We use the notation Y (t) = (YP(£))1<p<a, [1, nll = {1, ..., n} and i = (i, i, i3, is) € [1, n]*. We have

2 2

ElZo(tz) = Zn(O) P|Zo(0) = Zo(t)]* = E| Y i7" &(Vi(0) = Yie)| | D_ i *E(Y() — Y(0)
i=1 j=1

= Z Z (i1i2i3i4)71/aIE(§i151‘251’351’4)1[‘:[0(11: ® - Yiﬁ (t:) (13)
1=<p.q=die[[1,n]}*

(Y2(0) = YE (D)) (Y] (t2) = YA O) (Y (82) = Y (£))] -

< Z (irizisig) "/ [E(F;, 81, 81, 81,) IDi (L, £, ) (]5)

ie[[1,n])4
where
Di(t, t, t) = E|Y;, (t) — Y;, (t) Vi, (£) — Y, (E) || Yiy (£2) — Vi (O) || Y3, (2) — Y, (O)].
Consider ~;, the equivalence relation on {1, ..., 4} defined by
j~ij ifandonly ifi; = iy.

Let & be the set of all partitions of {1, ..., 4} and 7 (i) be the partition of {1, 2, 3, 4} given by the equivalence classes of ~;.
We introduce these definitions because, since the Y;’s are i.i.d., the term Dj(t, t1, t;) depends on i only through the associated
partition 7 (i). For example, if t (i) = {1, 2, 3, 4}, i.e.ifi; = iy = i3 = iy, then

Di(t, t1, &) = E|Y1(t) — Y1 (t)[*[Y1(t2) — Y1 (D)]*.
Orifr(i) = {1} U {2} U {3} U {4}, i.e. if the indices i1, . . ., is are pairwise distinct, then
Di(t, t1, t) = (E[Y1(t) — Y1(t)|E|Y1(2) — Y1(D)])°.

For T € &, we denote by D, (t, t1, t;) the common value of the terms D;(t, ti, t;) corresponding to indices i such that
t(i) = 7. Define also

P | ~ o~~~
Snr = > (irizisig) ™V |E(E;, B1, 81y 8, |-
ie{1,...n}% (=1

With this notation, Eq. (15) can be rewritten as

EZn(t2) = Zo(O)P|Za(0) = Zn(t)* < &) Sy oDe(t, 1, ). (16)

TEP

Under conditions (2) and (3), we will prove that for each t € 2, there exist 8; > 1/2, a nondecreasing continuous function
F; on [0, 1] and a constant S; > 0 such that

D.(t, t1,5) < |[Fe(t1) — F ()17, 0<t; <t <, (17)
and
Sn,r <S5, n>1 (]8)

Eqgs. (16)-(18) together imply inequality (12) for some suitable choices of 8 > 1/2 and F.
It remains to prove inequalities (17) and (18). If r = {1, 2, 3, 4},

D, (t, t1, tz) < E[Y1(t) — Y1(t)[*|Y1(t2) — Y1(DI* < |Fa(ty) — Fa(t1) %2

and
n
Sp=) iVUEE! < C(a.4).
i=1

If t = {1} U {2} U {3} U {4}, the Cauchy-Schwartz inequality entails
D:(t, t1, t5) < (EY1(t) — Ya(8)[E[Y1(t2) — Y1(D)? < [Fi(t2) — Fy (t1) [P
and

St< Y. (inkaisia) V(S |[EE, |EE;, || E&y,| < Cla, 1)

ie{1,...n}4r()=r
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Similarly, for T = {1, 2, 3} U {4},

D.(t, t1, t;) = E[Y1(t) — Yi(t1)[*|Y1(t2) — Y1(O)|E|Y;(t2) — Y1 (D)]
IF1(t) — Fi(t) P12 |Fy(t2) — Fa(6) |72 |Fi(t2) — Fa(8)|P17?
[(F1 + F2)(t) — (Fy + F2) (ty) |12

A

IA

and
St < Y. @)TVEEPES| < Cle. 3)Cle. 3).
1<i#j<n
orfort = {1,2} U {3} U {4},
D.(t, ty, &) = E[Y;(t) — Yi(t) P (E|Y1(2) — Y1(D)])*
IF1(8) — Fi(e) Pt [Fi () — Fi(0) |
F1(t2) — F1(t)]*"

IA

IA

and

Si= Y. @PilTVEEPIES || E& < Cle, 2)C(a, 1)
1<ij#k=<n

Similar computations can be checked in all remaining cases. The cardinality of  is equal to 13.

Step 5. We prove Theorem 1. For each fixed t € [0, 1], Kolmogorov’s three-series theorem implies that zn(t) converges
almost surely as n — o0. So the finite;climensional distributions of (Z,),>1 converge. The tightness in D? of the sequence
has already been proveg in step 4, so (Z,;)n>1 Wweakly converges in D¢ as n — oo. We then apply Theorem 1 of Kallenberg

(1974) and deduce that Z, converges almost surely in D%. In view of step 1 and step 2, this yields the almost sure convergence
of the series (1). O
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