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Abstract The result provided in this paper helps complete a unified picture of the
scaling behavior in heavy-tailed stochastic models for transmission of packet traffic
on high-speed communication links. Popular models include infinite source Pois-
son models, models based on aggregated renewal sequences, and models built from
aggregated on–off sources. The versions of these models with finite variance trans-
mission rate share the following pattern: if the sources connect at a fast rate over time
the cumulative statistical fluctuations are fractional Brownian motion, if the connec-
tion rate is slow the traffic fluctuations are described by a stable Lévy motion, while
the limiting fluctuations for the intermediate scaling regime are given by fractional
Poisson motion. In this paper, we prove an invariance principle for the normalized
cumulative workload of a network with m on–off sources and time rescaled by a fac-
tor a. When both the number of sources m and the time scale a tend to infinity with
a relative growth given by the so-called ’intermediate connection rate’ condition, the
limit process is the fractional Poisson motion. The proof is based on a coupling be-
tween the on–off model and the renewal type model.
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1 Introduction

It is well-known that packet traffic on high-speed links exhibit data characteristics
consistent with long-range dependence and self-similarity. To explain the possible
mechanisms behind this behavior, various network traffic models have been devel-
oped where these features arise as heavy-tail phenomena; see Resnick [20]. A natural
basis for modeling such systems, applied early on during these developments, is the
view of packet traffic composed of a large number of aggregated streams where each
source alternates between an active on-state transmitting data and an inactive off-
state. The traffic streams generate on average a given mean-rate traffic, they have
stationary increments and they are considered statistically independent. In particular,
the transmission channel is able to accommodate peak-rate traffic corresponding to all
sources being in the on-state. To capture in this model the strong positive dependence
manifest in empirical trace data measurements, it is assumed that the duration of on-
periods and/or off-periods are subject to heavy-tailed probability distributions. It is
then interesting to analyze the workload of total traffic over time and understand the
random fluctuations around its cumulative average. Our continued interest in these
questions comes from the finding that several scaling regimes exist with disparate
asymptotic limits.

The first result of the type we have in mind is Taqqu, Willinger and Sherman [21],
which introduces a double limit technique. In this sequential scheme, if the on–off
model is averaged first over the level of aggregation and then over time the result-
ing limit process is fractional Brownian motion. As the fundamental example of a
Gaussian self-similar process with long-range dependence, this limit preserves the
inherent long-range dependence of the original workload fluctuations. On the other
hand, averaging first over time and then over the number of traffic sources the limit
process is a stable Lévy motion. This alternative scaling limit is again self-similar but
lacks long-range dependence since the increments are independent. Moreover, hav-
ing infinite variance the limiting workload is itself heavy-tailed. In Mikosch, Resnick,
Rootzén and Stegeman, [7], the double limits are replaced by a single scheme where
instead the number of sources grows at a rate which is relative to time. Two limit
regimes of fast growth and slow growth are identified and two limit results corre-
sponding to these are established, where again fractional Brownian motion and stable
Lévy motion appear as scaled limit processes of the centered on–off workload. The
purpose of this paper is to show that an additional limit process, fractional Poisson
motion, arises under an intermediate regime which can be viewed as a balanced scal-
ing between slow and fast growth. In this case the scale of time grows essentially
as a power function of the number of traffic sources. As will be recalled, fractional
Poisson motion does indeed provide a bridge between fractional Brownian motion
and stable Lévy motion.

The intermediate limit regime discussed here is indicated in Kaj [12], and intro-
duced in Gaigalas and Kaj [10], where limit results are given for a different but related
class of traffic models under three scaling regimes referred to as slow, intermediate
and fast connection rates. The workload process is again the superposition of indepen-
dent traffic streams with stationary increments but now each source generates packets
according to a finite mean renewal counting process with heavy-tailed inter-renewal-
cycle lengths. The link to the class of on–off models is that each pair of an on-period



Queueing Syst (2011) 69:29–44 31

and a successive off-period forms a renewal cycle and the number of such on–off
cycles generate a heavy-tailed renewal counting process. Moreover, if we associate
with each renewal cycle a reward given by the length of its on-period and apply a suit-
able interpretation of partial rewards, then the corresponding renewal-reward process
coincides with the on–off workload process.

To explain briefly the limit result in [10] under intermediate connection rate, let
(Ni(t))i be i.i.d. copies of a stationary renewal counting process associated with a
sequence of inter-renewal times of finite mean μ and a regularly varying tail function
F̄ (t) ∼ L(t)t−γ , characterized by an index γ , 1 < γ < 2, and a slowly varying func-
tion L. Let m → ∞ and a → ∞ in such a way that mL(a)/aγ−1 → μcγ−1 for some
constant c > 0. Then the weak convergence holds,

1

a

m∑

i=1

(
Ni(at) − at

μ

)
=⇒ − 1

μ
cYγ (t/c),

where Yγ (t) is an almost surely continuous, positively skewed, non-Gaussian and
non-stable random process, which is defined by a particular representation of the
characteristic function of its finite-dimensional distributions. Additional properties
of the limit process are obtained in Kaj [13] and Gaigalas [9], where it is shown with
two different methods that Yγ can be represented as a stochastic integral with respect
to a Poisson measure N(dx, du) on R × R

+ with intensity measure n(dx, du) =
γ dx u−γ−1 du. Indeed,

Yγ (t) =
∫

R×R+

∫ t

0
1[x,x+u](y) dy

(
N(dx, du) − γ dx u−γ−1 du

)
, t ≥ 0,

([10] uses F̄ (t) ∼ L(t)γ −1t−γ , consequently n(dx, du) = dx u−γ−1 du). We call
this process fractional Poisson motion with Hurst index H = (3 − γ )/2 ∈ (1/2,1).
With

σ 2
γ = 2

(γ − 1)(2 − γ )(3 − γ )
= 1

2H(1 − H)(2H − 1)
= σ 2

H , (1)

we may put Yγ (t) = σγ PH (t) and obtain the standard fractional Poisson motion PH .
A calculation reveals

Cov(PH (s),PH (t)) = 1

2

(|s|2H + |t |2H − |t − s|2H
)
.

For comparison, standard fractional Brownian motion of index H has the representa-
tion

BH (t) = 1

σH

∫

R×R+

∫ t

0
1[x,x+u](y) dy M(dx, du),

where M(dx,du) is a Gaussian random measure on R × R
+ which is character-

ized by the control measure (3 − 2H)dx u−2(2−H) du. The covariance functions of
BH and PH coincide. The fast connection rate limit for the model of aggregated
renewal processes applies if mL(a)/aγ−1 → ∞ and the slow connection rate limit
if mL(a)/aγ−1 → 0. For suitable normalizing sequences, the limit processes under
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these assumptions are fractional Brownian motion with Hurst index H = (3 − γ )/2
in the case of fast growth and a stable Lévy motion with self-similarity index 1/γ in
the slow growth situation, see [10].

A number of other models have been suggested for the flow of traffic in communi-
cation networks. The superposition of independent renewal-reward processes applies
more generally to sources which attain random transmission rates at random times,
and not merely switch between on and off. For a model where the length of a trans-
mission cycle as well as the transmission rate during the cycle are allowed to be
heavy-tailed, Levy and Taqqu [15], Pipiras and Taqqu [18], and Pipiras, Taqqu and
Levy [19], established results for slow and fast growth scaling analogous to those
for the on–off model. In addition, they obtained as a fast growth scaling limit a sta-
ble, self-similar process with stationary but not independent increments, coined the
telecom process. A further category of models for network traffic with long-range de-
pendence over time starts from the assumption that long-lived traffic sessions arrive
according to a Poisson process. The sessions carry workload which is transmitted ei-
ther at fixed rate, at a random rate throughout the session, or at a randomly varying
rate over the session length. Such models, called infinite source Poisson models, are
widely accepted as realistic workload processes for Internet traffic. Indeed, it is natu-
ral to assume that web flows on a non-congested backbone link are initiated according
to a Poisson process while the duration of sessions and transmission rates are highly
variable. The conditions under which slow, intermediate and fast scaling results exist
and fractional Brownian motion, fractional Poisson motion, stable Lévy motion and
telecom processes arise in the asymptotic limits are known in great detail for variants
of the infinite source Poisson model, see Kaj and Taqqu [14]. In [14], Yγ is called
the intermediate telecom process. Mikosch and Samorodnitsky [8] consider scaling
limits for a general class of input processes, which includes as special cases the mod-
els already mentioned as well as other cumulative cluster-type processes. It is shown
that fractional Brownian motion is a robust limit for a variety of models under fast
growth conditions, whereas the slow growth behavior is more variable with a number
of different stable processes arising in the limit.

Our current result completes the picture for the intermediate scaling regime, where
neither of the mechanisms of fast or slow growth are predominant. In this case, we
show that the fluctuations which build up in the on–off model are robust and again
described by the fractional Poisson motion, parallel to what is known to be valid
for infinite source Poisson and renewal-based traffic models. In Sect. 2 we introduce
properly both the on–off model and the renewal-based model to be used as an ap-
proximation and we state the relevant background results for these models. In Sect. 3
we state the main result and give the structure of the proof. Section 4 is devoted to
remaining and technical aspects of the proof.

To conclude this introduction, we add some comments on the term fractional
Poisson motion, which is also used in [4]. The process PH appears naturally as a
limit process, it has the same covariance function as fractional Brownian motion and
a similar integral representation, with respect to a Poisson measure rather than an
Gaussian measure. In [4] it is shown that the analogous limit process PH for the
case 0 < H < 1/2 is such that its marginals PH (t) have the same distributions as
(Xt − X′

t )/
√

2, where Xt , X′
t are independent random variables both with a Pois-

son distribution of mean t2H . All in all, the phrase fractional Poisson motion seems
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natural. However, we should stress that the closely related term fractional Poisson
process appears in several recent papers to denote other objects. Wang et al. [22–24],
construct processes called fractional Poisson processes as stochastic integrals with
respect to Poisson random measures and study their properties; the resulting pro-
cesses are different from PH considered here, since different kernels are used. An-
other approach, entirely different from the present one, is based on fractional differen-
tial equations obtained by replacing the standard derivative in the equations govern-
ing the probability distribution of the homogeneous Poisson process by a fractional
derivative, see for example the papers by Jumarie [11], by Mainardi et al. [16] or by
Beghin and Orsingher [2, 3]. These fractional Poisson processes are different from
the process PH considered in the present paper.

2 The on–off model and background results

We begin by introducing the on–off model using similar notations as in [7]. Let Xon
and X1,X2, . . . be i.i.d. non-negative random variables with distribution Fon repre-
senting the lengths of on-periods. Similarly let Yoff, Y1, Y2, . . . be i.i.d. non-negative
random variables with distribution Foff representing the lengths of off-periods. The
X- and Y -sequences are supposed to be independent. For any distribution function F

we write F̄ = 1 − F for the right tail. We fix two parameters, αon and αoff, such that

1 < αon < αoff < 2, (2)

and assume that

F̄on(x) = x−αonLon(x) and F̄off(x) = x−αoffLoff(x), x → ∞, (3)

with Lon,Loff arbitrary functions slowly varying at infinity. Hence both distributions
Fon and Foff have finite mean values μon and μoff but their variances are infinite.
Assumption (2) agrees with that of [7]. However, thanks to a simple symmetry argu-
ment, we can also cover the case αon > αoff. The case αon = αoff, for which the on–off
process is an alternating renewal process, falls outside of the class of processes we
are able to study within the methodology developed here.

We consider the renewal sequence generated by alternating on- and off-periods.
For the purpose of stationarity we introduce random variables (X0, Y0) representing
the initial on- and off-periods as follows: let B , X

eq
on, Y

eq
off be independent random

variables, independent of {Xon, (Xn),Yoff, (Yn)}, and such that B is Bernoulli with

P(B = 1) = 1 − P(B = 0) = μon/μ,

and X
eq
on and Y

eq
off have distribution functions

F
eq
on (x) = 1

μon

∫ x

0
F̄on(s) ds and F

eq
off(x) = 1

μoff

∫ x

0
F̄off(s) ds,

respectively. Here the superscript ‘eq’ stands for ‘equilibrium’. Now, let

X0 = BX
eq
on and Y0 = BYoff + (1 − B)Y

eq
off.
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Note that X0 and Y0 are conditionally independent given B but not independent. At
time t = 0 the system starts in the on-state if B = 1 and in the off-state if B = 0.
With this initial distribution, the alternating renewal sequence is stationary and the
probability that the system is in the on-state at any time t is μon/μ. Renewal events
occur at the start of each on-period. Inter-renewal times are given by the independent
sequence Zi = Xi + Yi, i ≥ 0, where Zi has distribution F = Fon ∗ Foff and mean
μ = μon + μoff for i ≥ 1, and Z0 has distribution function

F eq(x) = 1

μ

∫ x

0
F̄ (s) ds.

The renewal sequence (Tn)n≥1 with delay T0 is defined by

Tn =
n∑

i=0

Zi,

and we denote by N(t) the associated counting process

N(t) =
∑

n≥0

1(0,t](Tn).

Note that N(t) has stationary increments and expectation E[N(t)] = t/μ. Moreover,
because of (2), the tail behavior of the inter-renewal times is given by

F̄ (x) ∼ Lon(x)x−αon , x → ∞, (4)

see Asmussen [1], Chap. IX, Corollary 1.11. The on–off input process is the indicator
process for the on-state defined by

I (t) = 1[0,X0)(t) +
∑

n≥0

1[Tn,Tn+Xn+1)(t), t ≥ 0.

The source is in the on-state if I (t) = 1 and in the off-state if I (t) = 0. The input
process I (t) is strictly stationary with mean

E
[
I (t)

] = P
(
I (t) = 1

) = μon/μ.

The associated cumulative workload defined by

W(t) =
∫ t

0
I (s) ds, t ≥ 0

is a stationary increment process with mean E[W(t)] = tμon/μ.
Let (I j ,Wj ,Nj )j≥1 denote i.i.d. copies of the input process I , the cumulative

workload process W , and the renewal counting process N for the stationary on–off
model. For m ≥ 1, consider a server fed by m independent on–off sources. We define
the cumulative workload of the m-server system as the superposition process

Wm(t) =
m∑

j=1

Wj(t), t ≥ 0, m ≥ 1,
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and the renewal-cycle counting process for m aggregated traffic sources by

Nm(t) =
m∑

j=1

Nj(t), t ≥ 0, m ≥ 1.

In this paper, we are mainly concerned with the asymptotic properties of the cu-
mulative workload when the number of sources, m, increases and time t is rescaled
by a factor a > 0. Thus, we consider the centered and rescaled process

Wm(at) − matμon/μ

b(a,m)
= 1

b(a,m)

m∑

j=1

∫ at

0

(
I j (s) − μon

μ

)
ds, t ≥ 0,

where the renormalization b(a,m) will be made precise in the sequel. The asymptotic
is considered when both m → ∞ and a → ∞. To deal with the simultaneous limits,
one usually consider the limits either when a = a(m) → ∞ as a → ∞ or when
m = m(a) → ∞ as a → ∞. Preference of one over the other asymptotic is a matter
of interpretation of the model, and both cases are used in the literature. We consider
here the slightly more general case when m = mn and a = an and we will always
suppose that

m = mn → ∞ and a = an → ∞ as n → ∞.

With no possible confusion, the parameter n will generally be omitted, and all asymp-
totics will be implicitely considered as n → ∞, unless stated otherwise. The relative
growth of m and a have a major impact on the limit. Following the notation in [10],
we consider the following three scaling regimes:

• fast connection rate

mn → ∞, an → ∞, mnLon(an)/a
αon−1
n → ∞; (FCR)

• slow connection rate

mn → ∞, an → ∞, mnLon(an)/a
αon−1
n → 0; (SCR)

• intermediate connection rate

mn → ∞, an → ∞, mnLon(an)/a
αon−1
n → μcαon−1, 0 < c < ∞. (ICR)

In [7], the asymptotic behavior of the cumulative total workload is investigated
under conditions (FCR) and (SCR).

Theorem 1 (Mikosch et al. [7]) Recall assumptions (2) and (3).

• Under condition (FCR) and with the normalization b(a,m) = (a3−αonLon(a)m)1/2,
the following weak convergence of processes holds in the space of continuous func-
tions on R

+ endowed with the topology of uniform convergence on compact sets:

Wm(at) − matμon/μ

b(a,m)
=⇒ σαon

μon

μ3/2
BH (t), t ≥ 0
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where σαon is given in (1) and BH (t) is a standard fractional Brownian motion with
index H = (3 − αon)/2.

• Under condition (SCR) and with the normalization

b(a,m) = inf{x ≥ 0 : F̄on(x) ≤ 1/am},
the following convergence of finite-dimensional distributions holds:

Wm(at) − matμon/μ

b(a,m)

f dd−→ σ0
μoff

μ1+1/αon
Xαon,1,1(t), t ≥ 0,

where Xαon,1,1(t) is a standard αon-stable Lévy motion totally skewed to the right,
i.e. such that

Xαon,1,1(1) ∼ Sαon(1,1,0),

and

σ0 = Γ (2 − αon) cos(παon/2)

1 − αon
.

The intermediate regime for renewal processes was investigated in [10]. The for-
mulation adopted here is given in [13], and is an immediate consequence of (4).

Theorem 2 (Gaigalas and Kaj [10]) Under condition (ICR) and with the normal-
ization b(a,m) = a, the following convergence of processes holds in the space of
càd-làg functions on R

+ endowed with the Skorokhod J1-topology:

Nm(at) − mat/μ

a
=⇒ − 1

μ
σαoncPH (t/c),

where σαon is given in (1), PH (t) is the standard fractional Poisson motion with Hurst
index H = (3 − αon)/2

PH (t) = 1

σαon

∫

R×R+

∫ t

0
1[x,x+u](y) dy

(
N(dx, du) − dx αonu

−αon−1 du
)
, (5)

and N(dx, du) is a Poisson random measure on R × R
+ with intensity dx αon ×

u−αon−1 du.

3 Intermediate limit for the on–off model

In this section we investigate the intermediate scaling limit for the on–off model. The
following is our main result.

Theorem 3 Under condition (ICR) and with the normalization b(a,m) = a, the fol-
lowing convergence of processes holds in the space of continuous functions on R

+
endowed with the topology of uniform convergence on compact sets:

Wm(at) − matμon/μ

a
=⇒ σαon

μoff

μ
cPH (t/c),
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with PH (t) the standard fractional Poisson motion defined in (5) and σαon > 0 given
by

σ 2
αon

= 2

(αon − 1)(2 − αon)(3 − αon)
.

Remarks 4 Basic properties of the process PH , here and in other recent work called
fractional Poisson motion, are discussed in the original papers [10] and [9]. Explicit
formulas are given for moments and cumulants, and for the cumulant generating func-
tion of the marginal distributions. In particular, the one-dimensional marginals are
characterized by their cumulant generating function

log EeθσαonPH (t) = 1

αon − 1

∫ t

0

∫ v

0
θ2eθuu−(αon−1) dudv.

Other forms of these generating functions, and characteristic functions, which explain
the Poisson representation (5), are given in [9, 13, 14]. However, to our knowledge
there are no useful representation results known for the density function of PH (t).
The trajectories of fractional Poisson motion PH are known to be Hölder continuous
of order δ for any δ ∈ (0,H). The fractional Poisson motion has stationary incre-
ments; it is not self-similar but does have a property of aggregate-similarity, intro-
duced in [13], which allows for an interpretation of the scaling parameter c. Consider
for each integer m ≥ 1 the sequence cm = m1/(αon−1). Then

cmPH (t/cm)
fdd=

m∑

i=1

P i
H (t),

where P 1
H ,P 2

H , . . . are i.i.d. copies of PH . Consider also the sequence c′
m =

m−1/(αon−1). For any m,

m∑

i=1

c′
mP i

H (t/c′
m)

fdd= PH (t).

Hence, by tracing the limit process in Theorem 3 as cm → ∞, we recover in distri-
bution the succession of all aggregates

∑
1≤i≤m P i

H , m ≥ 1. Also, by letting c′
m → 0

we find that the limit process represents successively smaller fractions which sum up
to recover fractional Poisson motion.

These relations explain the fact that fractional Poisson motion acts as a bridge
between the stable Lévy motion and fractional Brownian motion. First, {cH PH (t/c)}
converges weakly to {BH (t)}, as c → ∞. Indeed, cH

m PH (t/cm)
fdd=

1√
m

∑
1≤i≤m P i

H (t) and the Central Limit Theorem yields the Gaussian limit as
m → ∞. The required tightness property is shown in [9]. Moreover, it is shown in
[9] that c1/αonPH (t/c) converges in the sense of the finite-dimensional distributions
as c → 0 to the αon-stable Lévy motion. To see that the limit must be αon-stable, take
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d = c · c′
m for any c > 0. Then

c1/αonPH (t/c)
fdd= 1

m1/αon

m∑

i=1

d1/αonP i
H (t/d), m ≥ 1,

and, assuming that the rescaled process (c1/αonPH (t/c))t≥0 converges to some non-
trivial limit process L, we must have as c → 0 (and hence d → 0)

L(t)
fdd= 1

m1/αon

m∑

i=1

Li(t), m ≥ 1.

This indicates that the limit L must be αon-stable.

Heuristics of the proof of Theorem 3 To motivate that the limit process under inter-
mediate connection rate appears naturally, we discuss a decomposition of the centered
on–off process based on its representation as a renewal-reward model. We first note
that the single source cumulative workload has the form

W(t) = X0 ∧ t +
N(t)∑

i=1

Xi − (TN(t)−1 + XN(t) − t)+.

Similarly, focusing on off-periods rather than on-periods, we have

t − W(t) = Y0 ∧ t +
N(t)∑

i=1

Yi − (TN(t) − t) ∧ YN(t).

The centered single source workload is therefore

W(t) − μon

μ
t = −(

t − W(t)
) + μoff

μ
t

= −μoff
(
N(t) − t/μ

) −
N(t)∑

i=1

(Yi − μoff) + R(t)

with

R(t) = (TN(t) − t) ∧ YN(t) − Y0 ∧ t.

Thus, for the workload of m sources,

Wm(t) − μon

μ
mt = −μoff

(
Nm(t) − mt/μ

)

−
m∑

j=1

Nj (t)∑

i=1

(
Y

j
i − μoff

) +
m∑

j=1

Rj (t) (6)
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using obvious notations. The balancing of terms under the scaling relation (ICR),
makes it plausible that both terms

1

a

m∑

j=1

Nj (at)∑

i=1

(
Y

j
i − μoff

)
,

1

a

m∑

j=1

Rj (at)

vanish in the limit. This suggests asymptotically,

Wm(at) − μonmat/μ

a
∼ −μoff

Nm(at) − mat/μ

a
, (7)

and so Theorem 2 would imply Theorem 3. In the next final section, we will compare
rigorously the two processes in (7).

4 Proof of Theorem 3

The proof of Theorem 3 relies on the following three lemmas. Here,
P−→ denotes

convergence in probability.

Lemma 1 Under (ICR) regime, for all t ≥ 0,

1

a

m∑

j=1

Nj (at)∑

i=1

(
Y

j
i − μoff

) P−→ 0. (8)

Lemma 2 Under (ICR) regime, for all t ≥ 0,

1

a

m∑

j=1

Rj (at)
P−→ 0.

Lemma 3 Under (ICR) regime, the sequence of processes

Wm(at) − matμon/μ

a
, t ≥ 0, n ≥ 1

is tight in the space of continuous functions on R
+.

Proof of Theorem 3 By Theorem 2, Lemma 1 and Lemma 2, the convergence of
finite-dimensional distributions,

Wm(at) − matμon/μ

a
−→ σαon

μoff

μ
cPH (t/c),

is a consequence of the decomposition given in (6). By Lemma 3 the sequence is tight
in the space of continuous functions on R

+. Hence weak convergence holds in the
space of continuous functions and Theorem 3 is proved. �
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Proof of Lemma 1 We construct an alternative representation of the random variable
in the left hand side of (8). Define

Ñ1(at) = inf

{
k ≥ 0;X1

0 +
k∑

i=1

Z1
i ≥ at

}

and for j ≥ 2

Ñj (at) = inf

{
k ≥ 0;Xj

0 +
k∑

i=1

Z1
Ñj−1(at)+i

≥ at

}
.

For m ≥ 1, let Ñm(at) = ∑m
j=1 Ñj (at). The random variables Ñj (at), j ≥ 1 are

i.i.d. and for each fixed t ≥ 0

1

a

m∑

j=1

Nj (at)∑

i=1

(
Y

j
i − μoff

)
and

1

a

Ñm(at)∑

i=1

(
Y 1

i − μoff
)
,

have the same distribution (note that the uni-dimensional marginal distributions are
equal but not the multidimensional distributions). This representation will enable us
to prove that under assumption (ICR), in the space of cád-lág functions on R

+ en-
dowed with the Skorokhod J1-topology, we have the convergence

(
1

a

[amu]∑

i=1

(
Y 1

i − μoff
)
)

u≥0

=⇒ 0, (9)

where [x] denotes the largest integer less or equal to the real x. Moreover,

1

am
Ñm(at)

P−→ t

μ
, t ≥ 0. (10)

Equations (9) and (10) together imply that, for each t ≥ 0,

1

a

Ñm(at)∑

i=1

(
Y 1

i − μoff
) P−→ 0

and this proves the lemma. Thus, it remains to prove (9) and (10).
To this aim, recall that the random variables Y 1

i , i ≥ 1, are i.i.d. with distribution
such that the tail function F̄off is regularly varying with index −αoff. Hence there
exists a regularly varying function L such that the centered and rescaled sum

(
1

(am)1/αoffL(am)

[amu]∑

i=1

(
Y 1

i − μoff
)
)

u≥0

converges in the space of càd-làg functions to some αoff-stable Lévy motion (see [17],
the exact form of L or of the limit process are not needed here). This implies the
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convergence property (9), since the scaling assumption (ICR) with αon < αoff implies
a  (am)1/αoffL(am), in the sense that the ratio a/(am)1/αoffL(am) has limit +∞.

We now prove relation (10). The stationary renewal process N(t) has mean t/μ

and variance given asymptotically by

Var
[
N(t)

] ∼ σ 2
αon

1

μ3
t3−αonLon(t), t → ∞,

see [10], (30), and references therein. Hence, 1
am

Ñm(at) has mean t/μ and variance
under scaling (ICR), such that

Var

[
1

am
Ñm(at)

]
= 1

a2m
Var

[
N(at)

]

∼ a1−αonLon(at)

m
σ 2

αon

1

μ3
t3−αon → 0, a → ∞.

This shows that 1
am

Ñm(at) converges in the mean square sense to t/μ, which im-
plies (10). This ends the proof of Lemma 1. �

Proof of Lemma 2 Since |Rj (t)| ≤ Y
j

0 + (T
j

Nj (t)
− t) ∧ Y

j

Nj (t)
, it is enough to prove

1

a

m∑

j=1

Y
j

0
P−→ 0 and

1

a

m∑

j=1

(
T

j

N
j
t

− t
) ∧ Y

j

Nj (t)

P−→ 0.

By stationarity, the random variables Y
j

0 and (T
j

N
j
t

− t) ∧ Y
j

Nj (t)
have the same dis-

tribution; they represent the remaining time after 0 and t , respectively, of the first
off-period. Since both sums have the same distribution, we only consider the first
one.

Using Karamata’s Theorem (see [6]), the tail function F̄
eq
off satisfies

F̄
eq
off(x) = 1

μoff

∫ ∞

x

F̄off(s) ds ∼ 1

μoff

x−(αoff−1)

αoff − 1
Loff(x)

as x → ∞. This implies that the random variable Y0 has a regularly varying tail with
index −(αoff −1) and hence belongs to the domain of attraction of an (αoff −1)-stable
distribution. Therefore there exists a slowly varying function L, such that

1

m1/(αoff−1)L(m)

m∑

j=1

Y
j

0

converges in distribution to a stable law of index αoff − 1 (see [6]). Under scaling
(ICR) with αon < αoff, we have a � m1/(αoff−1)L(m) and hence

1

a

m∑

j=1

Y
j

0 =⇒ 0,

which is equivalent to the desired convergence in probability. �
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Proof of Lemma 3 The proof of tightness given in [7] for fast scaling (FCR) can be
adapted to our settings. We recall only the main lines. According to Billingsley [5],
Theorem 12.3, it is enough to prove that for any t1, t2 with |t1 − t2| ≤ 1 and for some
ε > 0, there exists a constant C > 0 and an n0 > 0, such that for all n ≥ n0

E

[
1

a

∣∣(Wm(at2) − mat2μon/μ
) − (

Wm(at1) − mat1μon/μ
)∣∣2

]
≤ C|t2 − t1|1+ε.

Here and in the sequel, please recall that both a = an and m = mn depend on n and
tend to +∞ as n → ∞. Using the definition of Wm, centering and stationarity of
increments, it is enough to prove that for all t ∈ [0,1] and n ≥ n0,

m

a2
Var

[
W(at)

] ≤ Ct1+ε (11)

(the constant C may change from one appearance to another). We shall prove this by
using the following two estimates: On the one hand, according to [7], (7.1), we have
as t → ∞,

Var
[
W(t)

] ∼ σ 2
αon

μ2
on

μ3
t3−αonLon(t). (12)

On the other hand, since |W(t)| ≤ t almost surely, the following global estimate holds
for all t ≥ 0,

Var
[
W(t)

] ≤ t2. (13)

The relation (12) and the scaling (ICR) together imply, as n → ∞,

a2

m
∼ c1−αon

μ
a3−αonLon(a) ∼ c1−αon

σ 2
αon

μ2

μ2
on

Var
[
W(a)

]
,

and so there is C > 0, such that for n large enough

m

a2
Var

[
W(at)

] ≤ C
Var[W(at)]
Var[W(a)] .

By (12), the function a �→ Var[W(a)] is regularly varying with index 3 − αon. Then,
using Potter bounds (see [6]), we conclude that there exist a0 > 0 and ε < 1 − αon/2,
such that for all t ∈ (0,1) and a ≥ a0/t ,

Var[W(at)]
Var[W(a)] ≤ 1

1 − ε
t3−αon−ε

(see the proof of Theorem 4 in [7] for details). This implies that for all t ∈ (0,1) and
all a such that at ≥ a0,

m

a2
Var

[
W(at)

] ≤ C

1 − ε
t3−αon−ε ≤ Ct1+ε.
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On the other hand, if t ≤ a0/a, we use the estimate (13) and obtain, for a large
enough,

m

a2
Var

[
W(at)

] ≤ Ca2t2

Var[W(a)] ≤ C
a2t2

a3−αonLon(a)
≤ C

(at)1+εa1−ε
0

a3−αonLon(a)

and so

m

a2
Var

[
W(at)

] ≤ C
a1−ε

0 t1+ε

a2−αon−εLon(a)
≤ Ct1+ε.

In the last inequality, we use the fact that 2 − αon − ε > 0 and so
a2−αon−εLon(a) → ∞ as a → ∞; taking a0 large enough, we can suppose that for
a ≥ a0, a2−αon−εLon(a) remains bounded away from zero.

By combining the estimates for the cases at ≥ a0 and at ≤ a0 we obtain (11),
which completes the proof. �
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