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A Probabilistic Study of DNA Denaturation
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We consider Benham’s model for strand separation in supercoiled circular DNA.
This is a mean field model in external inhomogeneous field, conditioned to small
values of the perimeter. Under some conditions on the external field, we prove
a large deviations principle for the distribution of the magnetization under the
Gibbs measure. The rate function strongly depends on the structure of the exter-
nal field. It allows us to prove a law of large numbers and to study denaturation
as a function of the temperature and the superhelical density.

KEY WORDS: Statistical mechanics; inhomogeneous field; large deviations
principle; DNA denaturation.

1. INTRODUCTION

Fundamental biological mechanisms such as replication and transcription
of DNA require the two strands of the DNA double helix to separate.
The separation of the two strands – called denaturation – can be partial
or total. Denaturation depends on several factors such as the temperature,
the composition of the DNA sequence and the geometry of the DNA poly-
mer. Benham proposes a mathematical model for the process of denatur-
ation (see refs. 2–4). His model is based on statistical mechanics ideas and
takes into account the temperature, the nature of the bases and the supe-
rhelicity of DNA. He also develops algorithms to locate the regions where
the denaturation is highly susceptible to occur. In ref. 13, the author com-
putes the thermodynamic limit of Benham’s model in the homopolymer case,
and for some special types of heteropolymer. Denaturation only occurs in
a few regions, and then eventually expands. Therefore Mazza proposes a
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modification of Benham’s model focusing on configurations having a small
number of ‘denaturation bubbles’. He computes the thermodynamic limit of
this new model for some types of DNA sequence and shows that the model
exhibits phenomena of phase transition. The present work is motivated by
extending these computations to more general heteropolymers. Identifying
the cases, where it is possible is a large part of the work, and is connected
with the notion of the structure of the DNA sequence.

We introduce Benham’s model in a somewhat formal way, that is in
the framework of one-dimensional spin model in inhomogeneous exter-
nal field. Consider a circular graph with N sites, labeled successively i =
1, . . . ,N . This graph stands for a circular DNA heteropolymer of length
N . This polymer is a double helix, each strand of the helix consists in N

nucleotides. Each vertex represents a pair of nucleotides. At each site there
is a spin denoted by σi taking values {−1,+1}. For convenience, we define
the variables

ni = 1+σi

2
=

{+1 if σi =+1,

0 if σi =−1,
i =1, . . . ,N.

The meaning of ni = 0 is that the bases of the double helix at site i are
linked by an hydrogen bond, the link is closed, and ni =1 means that this
bond is broken, the link is open. Let �N ={−1,+1}N be the configuration
space. We define some macroscopic quantities on the configuration space.
The magnetization of a configuration σ ∈�N is defined by

MN(σ)= 1
N

N∑
i=1

ni ∈ [0,1].

The magnetization stands for the proportion of denatured bonds and mea-
sures the denaturation: MN = 0 means that all links are closed, the DNA
polymer is not denatured, MN =1 means that all links are open, the poly-
mer is totally denatured. The field BN is given by a sequence of reals
(bN

i )1�i�N . The value of the field at site i represents the energy of the
bond between the bases located at site i. As a nucleotide pair is either
A+T or G+C, the field takes only two values denoted by bAT and bGC .
The AT-links are formed of two hydrogen bonds and the GC-links con-
sist in three hydrogen bonds so that bGC >bAT . The interaction of the spin
system with the external field is measured by the localized magnetization

MNBN
(σ)= 1

N

N∑
i=1

bN
i ni .
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It is a measure of the energy needed to break all the bonds and get
the configuration σ . The perimeter of a configuration σ ∈�N is defined by

RN(σ)= 1
2

N∑
i=1

1lσi �=σi+1 .

We make use of the circular boundary conditions: the site N is regarded
as being followed by site 1, so that σN+1 has to be seen as σ1. This comes
from the circular structure of the graph and ensures that the system is
invariant under translation. Because of the periodic boundary conditions,
the perimeter is an integer. It represents the number of connected domains
of denatured bonds or ‘denaturation bubbles’.

The Hamiltonian introduced by Benham is

HN(σ)=aRN(σ)+NF(MN(σ),MNBN
(σ )), (1)

where F is the function defined by

F(m, m̃)= 2π2CK0

4π2C +K0m

(
κ + m

A

)2 + m̃.

In this formula, κ is the superhelicity of the DNA polymer and is
considered as a parameter and the other terms are biological constants.
In Sun et al., the following values are given: at 0.01 mol Na+ concentra-
tion and temperature T = 310 K, a = 10.5 kcal/mol, bAT = 0.258 kcal/mol,
bGC = 1.305 kcal/mol, C = 3.6 kcal/rad2, A = 10.4, K0 = 2350 RT with
R = 8.3146 J/K/mol. For a discussion about this Hamiltonian, the reader
should refer to the original works of Benham(2−4) or to Clote and
Backofen.(8) In this Hamiltonian, we take into account the energy of
nucleation initiation (through the constant a), the energy of AT or GC

separation (through the constants bAT and bGC), the torsional or rota-
tional free energy (through the constant C) and the free energy associated
to the residual linking number (through the constant K0).

Let ρN be the uniform probability measure on �N . The Gibbs
measure is defined by

πN(σ)= 1
ZN

e−HN(σ)ρN(σ ),
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where the normalization factor ZN is the partition function defined by

ZN =
∫

�N

e−HN(σ)ρN(dσ).

What we are interested in is the asymptotic behavior of the Gibbs mea-
sure when it is conditioned on untypical small values of the perimeter. For
rN ∈N, define:

ρN,rN = ρN( . | RN � rN),

πN,rN = πN( . | RN � rN).

We suppose that the typical equilibrium state of the DNA complex is
distributed according to πN,rN . In ref. 13, the author shows that the
small perimeter assumption ensures the possibility of phase transitions,
that is the possibility for the existence of a stable and robust dena-
tured state when the superhelical density is small enough. Condition-
ing on small values of the perimeter makes the Ising nearest-neigh-
bour structure to disappear in the limit, at least for the aspects con-
sidered in this paper. So, we can consider the small perimeter condi-
tion as a slight modification of Benham’s model that allows to com-
pute the thermodynamic limit effectively. The justification of this assump-
tion relies on the principle of equivalence of ensembles (see refs. 11 and
12) and references herein). Roughly speaking, this principle states that
in the thermodynamic limit, the microcanonical measures and the grand
canonical measures are equivalent. Hence we believe that the thermody-
namic limit of the conditioned measures is equivalent to the thermody-
namic limit of the Benham’s measures with the value a equal to infin-
ity. This is relevant since the biological constants satisfy a �bAT , bGC . In
this paper, we present an extension of Mazza’s results for more general
heteropolymer.

Question. What is the asymptotic behavior of the magnetization MN

and the localized magnetization MNBN
under the conditioned Gibbs mea-

sure πN,rN , when rN �N?
In order to observe an asymptotic behavior for the localized magne-

tization MNBN
, we have to impose that the external fields BN converge in

some sense. The most interesting feature of this study is that the influ-
ence of the field on the magnetizations MN and MNBN

is explicited. We
obtain indeed a law of large numbers for the pair (MN,MNBN

), i.e. the
pair converges to a deterministic limit denoted by (M∞, M̃∞). This limit
can be evaluated and strongly depends on the external fields BN . The term
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M∞ represents the limit proportion of broken links, i.e. the limit denatur-
ation. The term M̃∞ stands for the amount of energy needed to break
all the bounds, it gives information on the localization of denaturation.
In order to prove the law of large numbers, we study the large devia-
tions properties of the magnetization (MN,MNBN

).We firstly prove a large
deviations principle (LDP) for the pair, and then deduce the law of large
numbers.

Our paper is organized as follows. Section 2 is devoted to the expo-
sition of the results: we state and discuss the hypotheses, give some exam-
ples, state the LDP for the distribution of (MN,MNBN

,RN/N) under the
conditioned Gibbs measure πN,rN , and deduce a law of large numbers. In
Section 3, the results are proved. Section 4 is devoted to applications: we
study DNA denaturation as a function of the superhelical density κ, and
give numerical computations (see Figs. 1 and 2).
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Fig. 1. Denaturation M∞ as a function of the superhelicity κ in the homogeneous case.
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Fig. 2. Denaturation M∞ as a function of the superhelicity κ in the very inhomogeneous
case.

2. STATEMENT OF THE RESULTS

2.1. Hypotheses and Examples

In the sequel, for N � 1, let BN = (bN
i )1�i�N ∈ {bAT , bGC}N be exter-

nal fields and rN �1 be integers. We suppose that the sequence of integers
rN �1 satisfies the small perimeter assumption:

• (H0) : lim
N→+∞

rN
N

=0.

2.1.1. Hypotheses on the Sequence of External Fields

Let (TN)N�1 be a sequence of integers. We define the average of the
field BN with scale TN and we denote by BN = (b̄N

i )1�i�N ∈ [bAT , bGC ]N

the field defined by

b̄N
i = 1

TN

i+TN−1∑
k=i

bN
k , 1� i �N (2)
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The periodic boundary condition bN
N+i =bN

i is used.
Roughly speaking, the first hypothesis (H1) is that the averaged field

BN is almost constant with at most rN values. Denote by LN,rN the set of
fields G∈RN , which are constant on rN subintervals: that is G= (gi)1�i�N

belongs to LN,rN if and only if there exist integers 0 = l0 <l1 · · ·<lrN =N

such that gi is constant on each of the rN sets of the form lk < k � lk+1.

The first hypothesis is:

• (H1): For each N �1, there exists a field B̃N = (b̃N
i )1�i�N ∈LN,rN such

that the distance δN = 1
N

∑N
i=1 |b̄N

i − b̃N
i | has limit zero as N →+∞.

Since b̄N
i ∈ [bAT , bGC ], we can also suppose that b̃N

i ∈ [bAT , bGC ].
For each field BN = (bN

i ) ∈ RN , we denote by µ(BN) the probability
measure

µ(BN)= 1
N

N∑
i=1

δbN
i
.

The sequence of fields BN is said to converge in distribution to a proba-
bility measure µ if the sequence of measures µ(BN) converges to µ as N

goes to infinity. We suppose that there exists a probability measure µ on
R such that:

• (H2) : The sequence of fields BN converges in distribution to µ as N →
+∞.

Under assumption (H1), this is equivalent to

• (H′
2) : The sequence of fields B̃N converges in distribution to µ as

N →+∞.

The last assumption states that the scale TN used to define the averaged
field BN is small:

• (H3) : lim
N→+∞

rNTN

N
=0.

We focus on configurations with at most rN connected domains of
denatured bonds, thus the mean length of a domain is of order N/rN .
Assumption (H3) states that TN � N/rN . Averaging is done on a local
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scale. Note that we have three length scales: the global scale is of order
N , the intermediate scale is of order N/rN , and the local scale is of order
TN . In several applications, the length scale TN will be a constant indepen-
dent of N , that is why we use the term local scale.

Remark. In this paper, we focus on fields having values in {bAT , bGC}
because the external field stands for the DNA sequence. It is worth not-
ing that we could work with general fields BN ∈RN . The results and proofs
extend to this more general case under analogous but somewhat stronger
hypotheses (essentially, we have to impose the convergence of the measures
µ(BN) to the measure µ and also the convergence of the first moment
of µ(BN) to the first moment of µ which is not automatic in the general
case.)

2.1.2. Examples

In order to explain the hypotheses, we exhibit some sequences of
external fields BN satisfying (H1)–(H3). The case of quasi-homogeneous
fields and very-inhomogeneous fields were mentioned in ref. 13.

Quasi-homogeneous fields. A sequence of fields BN is said to be quasi-
homogeneous with intensity b if it satisfies hypotheses (H1)–(H3) with
limit measure µ1 =δb, for some b∈R. Since the fields BN only take values
bAT and bGC , the parameter b must belong to [bAT , bGC ]. This is a gener-
alization of homogeneous fields: it is straightforward to check that if the
fields are constant, for example with value bAT , then hypotheses (H1)–(H3)

hold with limit measure µ=δbAT
(take TN =1). Another example is that of

periodic fields. Let W be a word in the letters {bAT , bGC} of length T . We
construct the fields BN by repeating the word W (to have N letters, repeat
it [N/T ] times and eventually add a few letters of the beginning of W ).
The mean intensity of the fields is approximatively b=1/T

∑
i∈W bi . Take

TN =T . Because of periodicity, the averaged field BN = (b̄N
i )1�i�N is con-

stant and equal to b, at least for 1 � i �N −T . Take B̃N be the constant
field with value b and length N . It is easy to check that hypotheses (H1)–
(H3) are satisfied with the limit measure µ1 = δb. We give a last example
of quasi-homogeneous fields in the context of random external fields. Sup-
pose that

• (H′
0) : There exists a sequence of integers TN satisfying (H3) such that

for every K >0, the series
∑

N�1 N exp (−KTN) converges.

This is stronger than assumption (H0). Note that Hypothesis (H ′
0) is

satisfied if rN = Nδ for some δ ∈ (0,1), with TN = N(1−δ)/2. Let b ∈
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[bAT , bGC ]. Suppose that the external field BN = (bN
i )1�i�N is random and

corresponds to independent and identically distributed variables bN
i , with

values bAT or bGC and expectation b. Then almost every sequence of fields
BN is quasi-homogeneous with intensity b. We omit the proof since it is a
consequence of Proposition 1, which will be proved in the sequel.

Very inhomogeneous fields. A sequence of fields BN is said to be very
inhomogeneous with intensity b∈ [bAT , bGC ] if it satisfies hypotheses (H1)–
(H3) with limit measure

µ2 = bGC −b

bGC −bAT

δbAT
+ b−bAT

bGC −bAT

δbGC
.

This measure is the one of greatest variance among the probability mea-
sures on [bAT , bGC ] with first moment b. This explains the terminology
‘very inhomogeneous field’. Suppose the fields BN belong to LN,rN and
that limN→∞ 1/N

∑N
i=1 bN

i =b. There are large areas where the field BN is
constant (with values in {bAT , bGC}) and the mean intensity of the field is
approximatively b. Then the sequence of fields BN is very inhomogeneous
with intensity b. To check it, take TN = 1 and B̃N = BN = BN . Hypothe-
sis (H1) is verified since BN belongs to LN,rN and the convergence of the
mean intensity to b ensures that hypothesis (H2) holds with limit measure
µ2.

Random external fields. The random framework provides us an inter-
esting family of examples.

Proposition 1. Suppose that assumption (H ′
0) holds. Let β : [0,1]→

[bAT , bGC ] be a piecewise continuous function. For N �1, define a random
external field BN such that the variables bN

i ,1� i �N are independent and
distributed according to

P(bN
i =bGC)=1−P(bN

i =bAT )= β(i/N)−bAT

bGC −bAT

.

Then, P-almost surely, the sequence of external fields (BN) satisfies
assumptions (H1)–(H3) with limit distribution µ, which is the distribution
of β(U) for U uniformly distributed on [0,1].

It is worth noting that a good choice of the function β allows us to
obtain any limit measure µ on [bAT , bGC ].

Biological fields. What about biological DNA sequences? In order to
apply our results on denaturation to real biological DNA sequences, can
we claim that our assumptions are satisfied? The answer is far from being
easy, and it is very striking to note that the question is of great biological
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interest. The first difficulty is that we generally consider only one DNA
sequence and not a sequence of DNA sequences. Thus the asymptotic has
to be interpreted as an approximation, which can be thought as effec-
tive since the length of DNA sequences is really high (for example sev-
eral thousands pairs of bases for the DNA sequence of a virus, several
billions pairs of bases for the human genome). What is the meaning of
our assumptions? The averaged field BN is strongly connected to the GC-
content along the sequence, which biologists plot with a moving window.
Such plots are popular in genetics. Long domains with almost constant
averaged field correspond to long parts of the sequence with homogeneous
GC content. This strongly remind us to the notion of isochore in genet-
ics. An isochore is a long portion of a DNA sequence with homogeneous
GC content. This notion was first mentioned in ref. 5. Since then, several
computational methods have been developed to exhibit the isochore struc-
ture in genome sequences (see for example the work of Olivier et al.(14)

It appears that some sequences do exhibit such a structure and others do
not. The notion of isochore is still a subject of research in genetics, and
even of controversy, as show the most recent publications.(7,10)

2.2. The Large Deviations Principle

At this point, we present the main mathematical result of the paper:

Theorem 1. Assume that assumptions (H0)–(H3) hold.
Then the distribution of (MN,MNBN

,RN/N) under the measure πN,rN sat-
isfies a large deviations principle with speed N and good rate function J�

defined by

J�(m, m̃, r)=
{

F(m, m̃)− inf� F if (m, m̃)∈� and r =0,

+∞ otherwise,

where � is the domain

�=
{

(m, m̃)∈R2 | 0�m�1 ,

∫ m

0
F−1

µ (x) dx � m̃�
∫ 1

1−m

F−1
µ (x) dx

}
.

(3)

The function F−1
µ denotes the pseudo-inverse of the repartition function

of the probability measure µ.

In this large deviations principle, the rate function J� is defined in
terms of the function F appearing in the definition of Benham’s Hamilto-
nian, and in terms of the domain �, which catches all information about
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the field BN . This domain will be of main importance in the sequel. In the
quasi-homogeneous case with intensity b, the limit measure is µ1 = δb and
the corresponding domain �1 is the segment defined by

�1 ={(m, m̃)∈R2 | 0�m�1 , m̃=bm}.

In the very inhomogeneous case with intensity b, the limit measure is µ2
and straightforward calculations show that the associated domain �2 is
the parallelogram defined by

�2 = {(m, m̃)∈R2 | 0�m�1,max(bAT m,b−bGC(1−m))� m̃

�min(bGCm,b−bAT (1−m))}.

One diagonal of this parallelogram is the segment �1. The two previ-
ous examples are extremal in the sense that they correspond to the most
homogeneous and inhomogeneous fields respectively. The general shape of
� satisfies the following:

Proposition 2. For any distribution µ on [bAT , bGC ] with mean b,
the domain � is convex, compact and symmetric around the point
(1/2, b). Furthermore, it contains the segment �1 corresponding to the
quasi-homogeneous case and is contained in the parallelogram �2 corre-
sponding to the very inhomogeneous case.

2.3. The Law of Large Numbers for Denaturation

The asymptotic behavior of (MN, M̃NBN
,RN/N) follows from the

study of the good rate function J�. We obtain the following:

Proposition 3. Let κ �= 4π2C/K0A. When N goes to infinity, the
distribution of (MN, M̃NBN

,RN/N) under πN,rN converges in distribution
to the Dirac measure at point (M∞, M̃∞,0). The point (M∞, M̃∞) is the
unique minimizer of the function F on �. It satisfies

M̃∞ =
∫ M∞

0
F−1

µ (x) dx. (4)

Equation (4) means that M̃∞ lies on the lower boundary of �.
Denaturation is localized so as to minimize M̃∞. It occurs in regions
where the averaged field BN is low, i.e. regions with high AT concentra-
tion (since bAT <bGC).

In the last section, we use Proposition 3 to study denaturation as a
function of superhelicity and give numerical applications.
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3. PROOF OF THE MAIN RESULTS

3.1. Proof of Theorem 1

The strategy of the proof is the following: Varadhan’s integral Lemma
allows us to derive the LDP for the magnetization under the Gibbs
measure πN,rN from a LDP for the magnetization under the uniform prob-
ability ρN,rN formulated in Proposition 4. Thanks to the small perimeter
assumption, the study of the magnetization under the uniform probabil-
ity is reduced to combinatorial considerations formulated in Proposition 5.
We have to study the existence of configurations with small perimeter and
prescribed magnetization. The scale hypothesis (H3) ensures that replacing
the field BN can be replaced by the field BN . Hypothesis (H1) allows us
to work with the field B̃N instead of BN . It is helpful since B̃N belongs to
LN,rN . Hypothesis (H2) ensures the convergence of the distribution of the
fields and hence the convergence of several associated quantities.

Throughout this section, we suppose that (BN)N�1 is a sequence
of fields, (rN) and (TN) are sequences of integers, and that assumptions
(H0)− (H3) are satisfied. We note L=max(|bAT |, |bGC |).

3.1.1. Reduction of the Proof

Proposition 4. The distribution of (MN,MNBN
,RN/N) under ρN,rN

satisfies a LDP with speed N and good rate function I� defined by

I�(m, m̃, r)=
{

0 if (m, m̃)∈� and r =0,

+∞ otherwise,

where � is the domain defined by (3).

Let us prove that Proposition 4 implies Theorem 1.
The Hamiltonian HN defined by Eq. (1) is a function of MN , MNBN

and
RN only. Thus the distribution of (MN,MNBN

,RN/N) under the Gibbs
measure πN,rN and under the uniform measure ρN,rN are linked by the
relation

∫
�N

θ(MN,MNBN
,RN/N)dπN,rN

=1/ZN,rN

∫
�N

expN [−aRN/N −F(MN,MNBN
)]

× θ(MN,MNBN
,RN/N)dρN,rN ,
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where θ :R3 →R is any bounded continuous function and ZN,rN is the par-
tition function defined by

ZN,rN =
∫

�N

expN [−aRN/N −F(MN,MNBN
)]dρN,rN .

Since the function (m, m̃, r) �→−ar −F(m, m̃) is bounded and continuous
on [0,1] × [bAT , bGC ] × [0,1], we can apply Varadhan’s integral Lemma to
derive the LDP for the distribution of (MN,MNBN

,RN/N) under πN,rN

from the LDP for the distribution of (MN,MNBN
,RN/N) under ρN,rN .

That is, Proposition 4 implies Theorem 1 thanks to Varadhan’s integral
Lemma.

Lemma 1. The following inequalities hold ρN,rN -almost surely:

|MNBN
−MNBN

|�2LrNTN/N, (5)

|MNBN
−MNB̃N

|� δN . (6)

Thus the distribution of MNBN
, MNBN

and MNB̃N
under ρN,rN are expo-

nentially equivalent.

Proof. Let σ ∈�N be such that RN(σ)� rN . The subset U ={i|σi =
+1} of {1, . . . ,N} is the disjoint union of at most rN ‘connected compo-
nents’ Ul ={ul, . . . , vl}. The difference is estimated by

|MNBN
(σ)−MNBN

(σ)|� 1
N

rN∑
l=1

∣∣∣∣∣∣
∑
i∈Ul

bN
i − b̄N

i

∣∣∣∣∣∣ . (7)

For the connected component Ul , we have

∑
i∈Ul

b̄N
i =

vl∑
i=ul

1
TN

i+TN−1∑
j=i

bj =
vl+TN−1∑

i=ul

αibi,

where αiTN is the cardinal of the set {i −TN +1, . . . , i}∩{ul, . . . , vl}. If ul +
TN −1� i �vl , then αi =1, otherwise 0�αi �1. Therefore,

∣∣∣∣∣∣
∑
i∈Ul

bN
i − b̄N

i

∣∣∣∣∣∣�
∣∣∣∣∣∣
ul+TN−1∑

i=ul

(αi −1)bi +
vl+TN−1∑

i=vl

αibi

∣∣∣∣∣∣�2LTN. (8)
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Equations (7) and (8) together yield Eq. (5).
Equation (6) is a straightforward consequence of assumption (H1):

|MNBN
(σ)−MNB̃N

(σ )|� 1
N

N∑
i=1

∣∣∣b̄N
i − b̃N

i

∣∣∣= δN .

The notion of exponentially equivalent measures is defined in ref. 9,
p. 130: the distributions of MNBN

, MNBN
under ρN,rN are said to be expo-

nentially equivalent if for every α >0,

lim sup
N→∞

1
N

log ρN,rN

(
|MNBN

−MNBN
|>α

)
=−∞. (9)

Inequality (5) and hypothesis (H3) imply that for large N ,

ρN,rN

(
|MNBN

−MNBN
|>α

)
=0.

This implies Eq (9). In the same way, inequality (6) and Hypothesis (H1)

imply that the distributions of MNBN
and MNB̃N

under ρN,rN are exponen-
tially equivalent.

Two sequences of exponentially equivalent measures have the same
large deviations properties, i.e. if a LDP hold for one sequence of mea-
sures, the same LDP will hold for any sequence of exponentially equiv-
alent measures – see Theorem 4.2.13 in ref. 9. Thus Lemma 1 allows us
to work with MNB̃N

, instead of MNBN
. It is equivalent to replace the field

BN by the field B̃N . It is helpful since B̃N belongs to LN,rN and verifies
Hypothesis (H ′

2).
It will be convenient to use simpler notations: in the sequel, we use

the notation M̃N instead of MNB̃N
.

Lemma 2. Let ωN ⊂�N be a sequence of events such that for large
N , ρN,rN (ωN)>0. Then

lim
N→+∞

1
N

log [ρN,rN (ωN)]=0.

Proof. The probability measure ρN,rN is the uniform probability on
the set {σ ∈�N |RN(σ)� rN }. As a configuration σ is uniquely determined
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by the value σ1 and the position of the 2RN(σ) sites i such that σi �=σi+1,
we have

card{σ ∈�N |RN(σ)� rN }=
rN∑
r=0

2
(

N

2r

)
�2(rN +1)

(
N

2rN

)
.

The last inequality holds for large N , because if 4rN �N and 0� r � rN ,

(
N

2r

)
�

(
N

2rN

)
.

If ρN,rN (ωN)>0, the following inequalities hold:

(
2(rN +1)

(
N

2rN

))−1

�ρN,rN (ωN)�1.

We then use Stirling’s formula to estimate the binomial coefficient and
Hypothesis (H0) to estimate the limit and the lemma is proved.

Lemmas 1 and 2 allow us to reduce Proposition 4 to the following
one:

Proposition 5.

• (A1) : For every closed set A⊂R2 disjoint from �, there exists N0 ∈N
such that for every N �N0, ρN,rN ((MN, M̃N)∈A)=0.

• (A2) : For every open set A⊂R2 intersecting �, there exists N0 ∈N such
that for every N �N0, ρN,rN ((MN, M̃N)∈A)>0.

Let us prove that Proposition 5 implies Proposition 4 and hence
Theorem 1. In view of Lemma 1, the LDP of Proposition 4 is equivalent
to a LDP for the distribution of (MN, M̃N,RN/N) under ρN,rN , with good
rate function I�. We have to show that for every open set O ⊂R3,

− inf
x∈O

I�(x)� lim inf
N→+∞

1
N

log ρN,rN

(
(MN, M̃N,RN/N)∈O

)
(10)

and that for every closed set C ⊂R3,

lim sup
N→+∞

1
N

log ρN,rN

(
(MN, M̃N,RN/N)∈C

)
�− inf

x∈C
I�(x). (11)
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As I� equals 0 on the set � × {0} and +∞ outside of this set, inequali-
ties (10) and (11) are trivial unless O is open and intersect �×{0} or C

is closed and disjoint from �×{0}. Let O ∈ R3 be an open set intersect-
ing �×{0}. There exists an open set A⊂R2 intersecting � and ε>0 such
that A×] − ε, ε[⊂ O. Hypothesis (H0) implies that for large N , rN/N < ε

and thus

ρN,rN ((MN, M̃N,RN/N)∈O)�ρN,rN ((MN, M̃N)∈A).

According to assertion (A2), this probability is strictly positive for large
N . Apply then Lemma 2 with ωN ={(MN, M̃N)∈A}. This yields Eq. (10).

Let C ∈R3 be a closed set disjoint from �×{0}. There exists a closed
set A ⊂ R2 disjoint from � and ε > 0 such that F ∩ (

R2 × [−ε, ε]
) ⊂ A ×

[−ε, ε]. Hypothesis (H0) implies that for large N , rN/N <ε and thus

ρN,rN ((MN, M̃N,RN/N)∈C)�ρN,rN ((MN, M̃N)∈C).

According to assertion (A1), this probability is equal to zero for large N .
Hence, the lim sup in Eq. (11) is equal to minus infinity, and this equation
holds.

3.1.2. Proof of Proposition 5

The following lemma investigates the behavior of M̃N conditionally
to MN .
Let mN ∈ [0,1] be such that NmN ∈N. Define the set

VN,mN
={M̃N(σ )|RN(σ)� rN ,MN(σ)=mN }.

Lemma 3. Then,

VN,mN
={M̃N(σ )|MN(σ)=mN } (12)

Let m̃ be such that min VN,mN
� m̃ � max VN,mN

. There exists m̃′ ∈ VN,mN

such that

|m̃′ − m̃|�L/N. (13)
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Suppose that mN →m as N →+∞. Then:

lim
N→∞

min VN,mN
=

∫ m

0
F−1

µ (x) dx, (14)

lim
N→∞

max VN,mN
=

∫ 1

1−m

F−1
µ (x) dx. (15)

Proof. Equation (12) states that we can forget the constraint RN �
rN in the definition of VN,mN

. This is true because the field B̃N belongs to
LN,rN – i.e. is constant on rN subintervals. Divide {1, . . . ,N} in rN subin-
tervals U1, . . . ,UrN , where the field B̃N is constant. Let σ ∈�N be a config-
uration such that MN(σ)=mN and let J be the set of the NmN indexes,
where σ = +1. The magnetization M̃N(σ ) only depends on the cardinal-
ity of the sets J ∩U1, . . . , J ∩UrN . We can modify the configuration σ in
the following way: choose two indexes i and j ∈ Ul such that σi = 1 and
σj = 0 and modify the configuration σ by setting σi = 0 and σj =1. This
modification does not change the values MN(σ) and M̃N(σ ). It is possi-
ble to perform several modifications in such a way that all the elements
of J ∩ Ui come on the left or on the right side of Ui . We obtain a con-
figuration σ ′ ∈�N such that MN(σ ′)=MN(σ)=mN , M̃N(σ ′)=M̃N(σ ) and
RN(σ ′)� rN . This proves Eq. (12).

Let σ− (resp. σ+) be a configuration in {σ ∈ �N |MN(σ) = mN } such
that M̃N is minimal (resp. maximal). We can find a path σ0 =σ−, . . . , σk =
σ+ such that two successive configurations differ only by switching two
spins, one from 0 to 1 and the other one from 1 to 0. Each config-
uration verifies MN(σ) = mN and two successive values in the sequence
M̃N(σ0), . . . , M̃N(σl) differ by at most 2L/N . This explains Eq. (13).

Let µ̃N = µ(B̃N) = 1/N
∑N

i=1 δ
b̃N
i

be the distribution of the external

field B̃N . We denote by F−1
µ̃N

the pseudo inverse of the repartition function
of the measure µ̃N . It is a step function defined on (0,1), which value on
]k −1/N, k/N ] is the kth smallest value among the b̃N

i . Thus,

min VN,mN
= 1

N

(
F−1

µ̃N

(
1
N

)
+· · ·+F−1

µ̃N

(
NmN

N

))
=

∫ mN

0
F−1

µ̃N
(x) dx.

(16)

Hypothesis (H ′
2) states that the sequence of measures µ̃N converge to µ.

This implies the convergence almost everywhere of the inverse repartition
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functions F−1
µ̃N

to F−1
µ . We also have the inequality |F−1

µ̃N
(x)| � L. Since

mN →m as N →+∞, Lebesgue’s theorem implies that

lim
N→+∞

∫ mN

0
F−1

µ̃N
(x) dx =

∫ m

0
F−1

µ (x) dx. (17)

Equations (16) and (17) together yield Eq. (14). Equation (15) is proved
in the same way.

Proof of Assertion (A1). Suppose that the assertion does not hold:
there exists a closed set A not intersecting � such that

. ∃Ni →+∞, ∃σNi
∈�Ni,rNi

such that (MNi
(σNi

), M̃Ni
(σNi

))∈A.

To simplify the notations, we omit the index i and write N instead of
Ni . Since the magnetization (MN(σ), M̃N(σ )) belongs to the compact set
[0,1]× [bAT , bGC ], we can assume that

(MN(σN), M̃N(σN)) →
N→∞

(m, m̃).

As A is a closed set, (m, m̃)∈A. Furthermore we have for each N ,

min VN,MN(σN ) � M̃N(σN)�max VN,MN(σN ).

Let N go to infinity, and use equations (14) and (15), this yields

∫ m

0
F−1

µ (x) dx � m̃�
∫ 1

1−m

F−1
µ (x) dx.

It means that (m, m̃)∈�. But (m, m̃) belongs to A and A doesn’t intersect
�. There is a contradiction and assertion (A1) must hold.

Proof of Assertion (A2). Let A be an open set intersecting � and
let (m, m̃)∈�∩A. We exhibit a sequence σN ∈�N such that RN(σN)� rN
and

(MN(σN), M̃N(σN)) −→
N→+∞

(m, m̃).

This will imply that for large N , (MN(σN), M̃N(σN)) belongs to A and
ρN,rN ((MN, M̃N)∈A)>0, proving assertion (A2).
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Let mN = [mN ]/N . This sequence verifies mN −→
N→+∞

m.

If m̃ is such that min VN,mN
� m̃ � max VN,mN

, then Eq. (13) implies that
there exists σN ∈�N such that RN(σN)�rN , MN(σN)=mN and |M̃N(σN)−
m̃|�L/N = ε

(1)
N .

If m̃<min VN,mN
, we choose σN such that RN(σN)� rN , MN(σ)=mN

and M̃N(σN)= min VN,mN
. As (m, m̃)∈�, we have the following inequali-

ties

|M̃N(σN)− m̃|=min VN,mN
− m̃�min VN,mN

−
∫ m

0
F−1

µ (x) dx = ε
(2)
N .

In the same way, if m̃>max VN,mN
, we prove a similar result with

ε
(3)
N =

∫ 1

1−m

F−1
µ (x) dx −max VN,mN

.

The three cases together ensure that there exists σN ∈ �N such that
RN(σN)� rN , MN(σN)=mN and |M̃N(σN)− m̃ |� εN with εN = max(ε

(1)
N ,

ε
(2)
N , ε

(3)
N ). Equations (14) and (15) imply that εN converges to 0 as N

goes to infinity. As a consequence, M̃N(σN) −→
N→+∞

m̃ and assertion (A2) is

proved.

3.2. Proof of Proposition 2

This proposition describes the general shape of �.

Proof. The function F−1
µ is nondecreasing and bounded. Thus the

function m �→ ∫ m

0 F−1
µ (x) dx is continuous, convex, bounded and m �→∫ 1

1−m
F−1

µ (x) dx is continuous, concave and bounded. This proves that �

is compact and convex. The relation

∫ 1−m

0
F−1

µ (x) dx =
∫ 1

0
F−1

µ (x) dx −
∫ 1

1−m

F−1
µ (x) dx =b−

∫ 1

1−m

F−1
µ (x) dx,

shows that � is symmetric around the point (1/2, b). Since the points
(0,0) and (1, b) belong to the convex domain �, the segment �1 between
these points is contained in �. Since F−1

µ takes its values in [bAT , bGC ],

mbAT �
∫ m

0
F−1

µ (x) dx �
∫ 1

1−m

F−1
µ (x) dx �mbGC. (18)
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As
∫ 1

0 F−1
µ (y)dy =b,

b−bGC(1−m)�
∫ m

0
F−1

µ (x) dx �
∫ 1

1−m

F−1
µ (x) dx �b−bAT (1−m).

(19)

Equations (18) and (19) imply the inclusion �⊆�2.

3.3. Proof of Proposition 3

In this section, we show some applications of the large deviations
principle stated in Theorem 1: the magnetizations obey a law of large
numbers, that is to say converge to a deterministic limit as the system size
N goes to infinity. This result is derived from the study of the minima of
the good rate function J�. We assume that the hypotheses of Theorem
1 are satisfied with the limit measure µ. The Hamiltonian is defined in
Eq. (1), it depends on physical constants a, bAT , bGC , C, K0, A, and on
the superhelicity κ.

Proof. The good rate function J� has value +∞ outside of �×{0}.
On �×{0}, it is defined by

J�(m, m̃,0) = F(m, m̃)− inf
�

F = 2π2CK0

4π2C +K0m
(κ + m

A
)2 + m̃− inf

�
F

= G(m)+ m̃,

where G denote the function defined on [0,1] by

G(m)= 2π2CK0

4π2C +K0m
(κ + m

A
)2 − inf

�
F.

In order to minimize J�(m, m̃,0), we choose the lowest m̃, that is
m̃= ∫ m

0 F−1
µ (x) dx, and minimize on [0,1] the function φ defined by

φ(m)=G(m)+
∫ m

0
F−1

µ (x)dx.

The function G has a second derivative given by

G′′(m)= 4π2CK0(K0κA−4π2C)2

(4π2C +K0m)3A2
.
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Hence for κ �=4π2C/K0A, the function G is strictly convex. As F−1
µ is non

decreasing, its primitive is convex. Hence, for κ �=4π2C/K0A, the function
φ is strictly convex on [0,1], and achieves its minimum at a unique point
M∞. Let M̃∞ = ∫ M∞

0 F−1
µ (x) dx. The rate function J� achieves its mini-

mum at a unique point which is (M∞, M̃∞,0). The large deviations prin-
ciple stated in Theorem 1 implies the convergence of the distribution of
(MN, M̃N,RN/N) under πN,rN to the Dirac measure at point (M∞, M̃∞,0)

with an exponential speed.

Remark. If κ =4π2C/K0A, the good rate function J� reduces on �×
{0} to the linear function

J�(m, m̃,0)= κ

2A

(
κ + m

A

)
+ m̃− inf

�
F.

The uniqueness of a minimizer depends on the shape of �. In the case
0<bAT <bGC (more important in applications), uniqueness always holds.

3.4. Proof of Proposition 1

In this section, (�,F,P) is a probability space. For N � 1, the field
BN is a random variable from � to {bAT , bGC}N. We denote by BN(ω) a
realization of the random variable BN .

Let β → [bAT , bGC ] be a piecewise continuous function. We suppose
that for N � 1, the distribution of the random field BN is such that the
variables bN

i ,1� i �N are independent and distributed according to

P(bN
i =bGC)=1−P(bN

i =bAT )= β(i/N)−bAT

bGC −bAT

.

The variable bN
i is {bAT , bGC}-valued, with expectation β(i/N).

Suppose furthermore that the sequence of integers rN satisfies assump-
tion (H ′

0). Proposition 1 states that P-almost surely, the sequence of fields
BN satisfies assumptions (H1)–(H3) with limit distribution µ, which is the
distribution of β(U) for U uniformly distributed on [0,1].
The proof of Proposition 1 relies on a lemma of uniform exponential con-
centration for the empirical mean of Bernoulli variables:

Lemma 4. Let X1, . . . ,Xn be independent variables, Xi being {0,1}-
valued with expectation xi . Let X̄ be the mean of the Xi ’s, and x̄ be the
mean of the xi ’s. For every ε > 0, there exists K(ε) > 0 depending on ε

only, such that

P(|X̄ − x̄|>ε)�2e−K(ε)n.
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Proof. The proof of this lemma is a straightforward application of
the standard concentration inequality for bounded martingales differences
– see for example ref. 9 Section 2.4.1.

Proof of Proposition 1. Choose TN given by assumption (H ′
0). For

1 � i � N , the variable b̄N
i is the empirical mean of TN independent

{bAT , bGC}-valued variables. The expectation of bN
i is β̄N (i/N), where β̄N

is the function defined by

β̄N (x)= 1
TN

i+TN−1∑
k=i

β(x +k/N)

with the periodic boundary condition β(x +1)=β(x).
We apply Lemma 4: for every ε >0,

P(|b̄N
i − β̄N (i/N)|>ε)�2e−TNK ′(ε)

with K ′(ε) = K(ε/(bGC − bAT )). We need this normalization because the
bN
i are not in {0,1} but in {bAT , bGC}. As a consequence, we have the fol-

lowing estimation

P
(

max
1�i�N

|b̄N
i − β̄N (i/N)|>ε

)
�2Ne−TNK ′(ε).

Since the series
∑

N�1 2Ne−TNK ′(ε) is finite, Borel Cantelli’s Lemma implies
that P-almost surely,

max
1�i�N

|b̄N
i − β̄N (i/N)| −→

N→+∞
0. (20)

We now study the behavior of the deterministic functions β̄N as N goes to
infinity. If β is continuous on [0,1] and β(0)=β(1), then β is uniformly
continuous on [0,1] (with the boundary condition). As a consequence, the
sequence of functions β̄N uniformly converges on [0,1] to β as N goes
to infinity. If β is piecewise continuous on [0,1], the uniform convergence
holds on any compact where β is continuous, and the sequence of func-
tions β̄N converges to β in L1([0,1]). This implies the convergence of the
measures

1
N

N∑
i=1

δβ̄N (i/N) −→
N→+∞

β(U) (21)
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with U uniformly distributed on [0,1].
Equations (20) and (21) implies that P-almost surely

µN = 1
N

N∑
i=1

δb̄N
i

−→
N→+∞

β(U),

i.e. assumption (H2) holds almost surely with limit measure µ equal to the
distribution of the random variable β(U).

As the piecewise continuous function β can be approximated by a
sequence of piecewise constant functions, there exists B̃N = (b̃N

i )1�i�N ∈
LN,rN such that

1
N

N∑
i=1

|b̃N
i −β(i/N)| −→

N→+∞
0. (22)

Equations (22), (20) and the convergence in L1([0,1]) of the sequence β̄N

to β implies that P-almost surely

1
N

N∑
i=1

|b̃N
i − b̄N

i | −→
N→+∞

0.

It means that Hypothesis (H1) holds P-almost surely.

4. APPLICATION: DENATURATION AS A FUNCTION OF THE

SUPERHELICITY

We study denaturation as a function of superhelicity κ and pres-
ent numerical computations. Note that similar computations can be done
to study the denaturation as a function of the temperature. The values
taken for the physical constants bAT , bGC, . . . are those given by Clote and
Backofen(8) recalled in the introduction. We plot the function κ �→M∞(κ)

in the quasi-homogeneous case (Fig. 1) and in the very inhomogeneous
case (Fig. 2), both with mean intensity (bAT +2bGC)/3. In both cases, we
represent the denaturation M∞ of a DNA polymer (on the y-axis) as a
function of its superhelicity κ (on the x-axis). Both polymers consist in a
large number of nucleotides, with a concentration in AT of 33.3%, and in
GC of 66.7%. The difference between the two polymers lies in the repar-
tition of the nucleotides. The first one has an homogeneous repartition of
the nucleotides along the sequence whereas the second one contains large
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areas with only A and T , and large areas with G and C. Note that for
the computation, we don’t need the DNA sequence, but only the limit
distribution µ. The computations are based on Proposition 3: we com-
pute the minimizer of the good rate function J� on the domain � × {0}
in two different cases. In the homogeneous case, the limit distribution is
µ1 = δ0.333bAT +0.667bGC

and the domain �1 is a segment. In the very inho-
mogeneous case, the limit distribution is µ2 = 0.333δbAT

+ 0.667δbGC
and

the domain �2 is a parallelogram.
We now comment upon these figures. In both cases, for κ = 0, the

DNA polymer is not denatured – M∞ =0. This nondenatured state is sta-
ble: for κ ≈ 0, we still have M∞ = 0. On the other side, for large abso-
lute value of the superhelicity |κ|, the DNA polymer is totally denatured
– M∞ =1.

In the homogeneous case (Fig. 1), the nondenatured state M∞ = 0 is
obtained for a superhelicity κ between the critical values κ−

1 ≈−0.005 and
κ+

1 ≈ 0.024. If the superhelicity overcrosses the critical value κ+
1 , partial

denaturation occurs – M∞ > 0. The denaturation increases with the supe-
rhelicity, until it reaches the critical value κ+

2 ≈ 0.175, where the denatur-
ation is total – M∞ =1. This totally denatured state is stable: for κ �κ+

2 ,
we still have M∞ = 1. For negative values of the superhelicity, κ−

1 � κ � 0
correspond to the stable nondenatured state, κ−

2 <κ <κ−
1 to partial dena-

turation and κ �κ−
2 to the stable totally denatured state, with the critical

value κ−
2 ≈−0.156. Note that |κ−

1 |<κ+
1 and |κ−

2 |<κ+
2 : this reflects the fact

that for a fixed amount of absolute superhelicity, the denaturation is larger
for negative superhelicity than for positive superhelicity. In other terms,
negative supercoiling enhances denaturation.

In the very inhomogeneous case (Fig. 2), the stable nondenatured
state corresponds to a superhelicity between the critical values κ−

1 ≈
−0.001 and κ+

1 ≈ 0.020. The stable totally denatured state occurs for κ �
κ+

2 or κ � κ−
2 , with the critical values κ−

2 ≈ −0.173 and κ+
2 ≈ 0.192. The

intermediate values of the superhelicity κ−
2 <κ <κ−

1 and κ+
1 <κ <κ+

2 yield
partial denaturation. In this case, a new stable state appears correspond-
ing to M∞ =0.333: this state corresponds to the complete denaturation of
the AT domain and the non-denaturation of the GC domain. It occurs for
κ+

3 � κ � κ+
4 and κ−

4 � κ � κ−
3 , with the critical values κ+

3 ≈ 0.059, κ−
3 ≈

−0.040, κ+
4 ≈ 0.081 and κ−

4 ≈ −0.062. For positive supercoiling, 0 � κ �
κ+

1 correspond to the stable nondenatured state, for κ+
1 < κ < κ+

3 the AT
domain is partially denaturated, for κ+

3 � κ � κ+
4 the stable state corre-

sponding to the total denaturation of the AT domain is reached, for κ+
4 <

κ < κ+
2 the GC domain is partially denatured and for κ � κ+

2 , the totally
denatured state is reached. The same behavior holds for negative super-
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coiling. Once again, note that the critical values corresponding to negative
supercoiling are smaller: for i =1, . . . ,4, |κ−

i |<κ+
i . This shows that nega-

tive supercoiling enhance denaturation.
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